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ABSTRACT 
 
The Naval Postgraduate School is developing NPSNET-V, a Run-Time 

Extensible Virtual Environment (RTEVE) framework.  RTEVEs differ from traditional 

VEs in that applications within the environment can both discover and use new object 

types and behaviors at runtime.  As the use of this technology has become more valuable 

to organizations, the need for adequate security has arisen, particularly for sensitive 

military and commercial applications.  The level of security measures employed by these 

applications must be weighed against their impact on Quality of Service (QOS).   

To address RTEVE security issues, we developed a taxonomy identifying twenty-

five information assurance (IA) areas within RTEVEs.  We then designed and 

implemented a Security Management System for NPSNET-V (NSMS) that provided 

security through the use of three communications filters that provide for encryption, 

sequencing verification, and integrity.  This design addressed four of the twenty-five 

areas identified in the taxonomy: component authentication; and communications 

confidentiality, integrity, and authentication.   

Analysis of the encryption, sequencing, and integrity filters indicates that their use 

introduces a negligible delay of 0.111 milliseconds for a 156 byte data packet, at the cost 

in packet size increase of 41 bytes; this indicates the technical feasibility of RTEVE data 

packet security at minimal cost to QOS.     
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I. INTRODUCTION  

A. PROBLEM STATEMENT 

The term virtual environment (VE) can be used to describe many different types 

of systems.  The scope of this work is centered in the context of networked visual VEs, in 

which participants are interacting with other participants in a ‘real-time’ manner.  

Participants are depicted visually through the use of an image/model (commonly referred 

to as an ‘avatar’) in a two- or three-dimensional manner.  These are different from non-

visual collaborative virtual environments (CVEs) and virtual organizations (VOs) that 

share resources and data strictly for computational reasons, and have no requirement for 

real-time visual depictions of the interactions.  

A special type of networked visual virtual environment is the Run-Time 

Extensible Virtual Environments (RTEVEs).  Traditional VEs can only operate with 

objects and behaviors that are present when the VE was started; if any kind of new object 

type needs to be added to the VE, the VE would need to be halted, the new object-type 

inserted into the database, and then the VE restarted.  RTEVEs are useful for systems that 

require continuous operation coupled with the ability to add new objects, behavior, and 

functionality at runtime.  This also requires that not only data also code modules be 

passed over the network.   

  Networked visual VEs must have significant minimum latency requirements in 

order to retain a sense of presence. The VE must respond and interact with other 

participants within the expected human reaction times. [Singhal99]. Given these 

limitations, security, which unavoidably adds to latency, has usually been sacrificed or 

ignored. Contributing to this tendency has been a lack of requirements for security in VEs 

designed for academic research.  Military VEs, such as SIMNET (Simulator Networking) 

[Singhal99], were one of the few VE areas that had a requirement for security. This 

requirement was typically met by three techniques: physical security for the hosts and 

local area network; dedicated wide area networks, not accessible from public networks; 

and network link layer encryption provided by dedicated hardware for wide area network 

communications.  With the dramatic increase in computing and network speed over the 
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past few years, networked VEs have become more widespread. Commodity, low-cost 

desktop PCs networked over high speed links can be used as fully participating hosts in 

visual networked VEs.  And this has allowed the widespread deployment of VE 

applications on public networks that are not secured against attack. This new 

environment cannot use the same measures that the military used to secure their VEs. 

LANs cannot always be physically secured against all intruders in a shared environment, 

and WAN connections must be shared with other users. Link layer security is sometimes 

impractical for certain types of VE communications.  As security-sensitive VE 

applications are developed for networked VEs, these security issues must be addressed.  

The increase in computing power has also allowed mechanisms that were previously 

considered impractical to be deployed.        

NPSNET-V was developed at the Naval Postgraduate School and is a framework 

for the development and research of RTEVE applications.  A main design goal of 

NPSNET-V is to be flexible and deployable on public networks.  Therefore, security of 

the network cannot be assumed.  Consequently, any desired level of security must reside 

within the application itself.   

The motivation for this thesis is twofold.  The first goal is to develop a taxonomy 

that identifies the areas of security concern within the domain of RTEVEs.  The second 

goal is to provide the foundation for a security capability within NPSNET-V, and identify 

its impact on Quality of Service (QOS).     

B. THESIS STATEMENT  

The use of security-enabling filters that provide for the encryption, sequencing, 

and integrity of data packets within an RTEVE are effective at addressing relevant 

RTEVE Information Assurance (IA) concerns with minimal impact on the QOS areas of 

delay and bandwidth.         

C. METHODOLOGY 

This section describes the overall methodology that was followed in developing a 

taxonomy describing twenty-five security related areas within RTEVEs, and the 

subsequent design and analysis of the basic security management system that was 

designed for NPSNET-V.   Since NPSNET-V initially had no security capabilities, and a 

VE’s main characteristic is the multitude of packets that are exchanged when updating 
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state information, the design for this base system revolved around the data transmission 

flows for entity update information.  And, in keeping with the QOS concerns that are 

central to networked systems, various analyses were performed to determine the impact 

of the added security mechanisms.      

1. Review of Virtual Environments 

A look into the security of RTEVEs required first an understanding of the typical 

VE architecture, the desired characteristics of effective VEs, and the QOS issues to be 

considered when determining what security measures to use.  A comprehensive look at 

VEs can be found in [Singhal99]. 

2. Analysis of RTEVE Architecture, Case Study of NPSNET-V 

In order to identify pertinent security-related concerns and areas within the realm 

of RTEVEs, an actual RTEVE architecture, NPSNET-V was reviewed and analyzed.  

Analysis of its structure and design allowed for the breakdown of the system into 5 

identified functional areas. 

3. Review of Related Security Research 

Much research has been performed in the topic of information assurance (IA).  

However, security research specific to VEs has been somewhat limited.  A thorough 

review of research applicable to VE security was undertaken, with the intent of assisting 

in the development of the taxonomy, and providing information about the policy and 

mechanisms that can be applied to address the identified RTEVE security areas.   

4. Develop A Taxonomy of RTEVE Security Concerns 

The analysis of NPSNET-V and the study of security technology research were 

then used to develop a taxonomy describing twenty-five RTEVE security areas.  The 

developed taxonomy is further explained through the use of scenarios that assist in 

understanding the concepts.  Further, the research was used to identify security measures 

applicable in addressing individual and combined areas of the taxonomy. 

5. Design and Implementation of the NSMS 

Having identified the need to address security in the entity state data packet 

transmission infrastructure, and having the knowledge of appropriate mechanism to 

employ, the design and implementation of the SMS was the next logical step.  An 

appropriate design was developed and implementation executed.  Since NPSNET-V is a 
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Java-based framework, the Java Security Application Programming Interface (API) was 

identified as the appropriate basis of providing security functionality for the NSMS.  The 

design includes a server-client authentication process with symmetric key-distribution for 

encryption of communication links.  Functionality of the system provides for 

communication enciphering and deciphering, packet data integrity verifications, and 

packet sequencing operations.   

Four of the twenty-five identified areas are addressed by the designed system.  

These areas are: 

• Component authentication: addressed by the authentication of one 

particular type of component, the StandardSecurityManager, via digital 

certificates. 

•  Communication authentication: addressed by applications having 

knowledge of a secret key. 

• Communication integrity: addressed through the use of integrity verifying 

message digests. 

• Communication confidentiality: addressed through the use of symmetric 

key encryption.         

6. Analysis of NSMS Capabilities on QOS  

Once the implementation was functional and in place, we then studied the impact 

of the functional areas of the NSMS on QOS, primarily bandwidth and delay.        

D. RESULTS 

This work has resulted in a greater understanding of the domain of security within 

RTEVEs, as evinced by the developed matrix of twenty-five RTEVE security areas.  It 

must be remembered, that this taxonomy only covers the RTEVE application realm itself, 

and assumes other areas of information assurance are handled by the systems on which 

RTEVEs are executed.  Mechanisms exist that can be used to address these areas, but 

these can come at the cost of QOS which is even especially vital for VE applications.   

The development of the NPSNET-V Security Management System (NSMS) 

indicates that it is feasible to incorporate entity state update data security within RTEVEs.  
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Additionally, the security mechanisms that can be applied to the data packet exchange 

infrastructure can be effective with minimal impact to QOS issues. 
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II. BACKGROUND AND RELATED WORK  

This chapter provides the reader with an understanding of why security is relevant 

to VEs, an overview of VEs, as well as a discussion on RTEVEs using NPSNET-V as a 

case study.  An overview of current security work relevant to VEs is presented, followed 

by an overview on technologies used in the implementation of the NSMS. 

A. INTRODUCTION  

Historically, the Department of Defense was the primary developer of networked 

VEs.  Its early work with training simulators, such as SIMNET (SIMulator NETworking) 

paved the way for today’s VEs [Singhal99].  These early VE efforts required large 

amounts of computing resources and specialized systems, and thus security of those VEs 

rested primarily on the fact that the networks were not directly accessible via the Internet. 

 With the proliferation of PC workstations, and their increasing computing power, 

distributed, real-time VEs are becoming more commonplace and are used for a multitude 

of applications ranging from training to manufacturing and gaming.  Their architectures 

have traditionally been driven by QOS considerations, with little concern paid to security 

issues. However, the new application domains have significant security requirements, 

explicitly recognized or not, that may involve proprietary or valuable information.    

B. SECURITY AND VIRTUAL ENVIRONMENTS 

This section briefly discusses the need for security within VEs.  It also discusses 

the idea of a continuum of levels of support for IA, and how the unique characteristics of 

various VE applications may require specialized security measures.  

1. Why Security is Necessary 

More and more organizations have realized what the on-line gaming industry and 

military have known for years: VEs are more revenue generating applications, cost 

cutting team training and development tools, and safe training environments.  As the 

value and potential of VEs become better understood, they will likely be utilized for an 

ever greater diversity of applications.  Many of these VEs will be used in sensitive 

contexts that make them targets of malicious entities.  Consider the following examples: 
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Example #1: Manufacturers may use VEs for virtual prototyping, allowing 

engineers at several locations to make design decisions in a collaborative envi-

ronment in which they are all virtually present and observe proprietary 

information.  A competitor, engaging in industrial espionage, might be able to 

view the proprietary information and use it to the their advantage in the 

marketplace, or they may modify or destroy the information to mislead or disrupt 

the target corporation. 

Example #2: A military commander may utilize a VE to visualize the battlefield 

and all pertinent intelligence information during a conflict.  An adversary that is 

able to exploit weaknesses in the VE could inject false information, causing the 

commander to make misinformed decisions, such as mistakenly sending troops 

into an orchestrated ambush. 

2. Varying Levels of Security 

As touched on above, the level of security of an individual VE will be driven 

primarily by the organizations using the VE and the context in which the VE will be 

used.  Consideration must be given to tradeoffs such as the cost to develop and maintain 

the system, system performance as determined through quality of service measurements, 

and the risk and consequences of a security compromise.   

Some VEs will need high levels of security, and run on trusted systems with 

mandatory access control policies and multiple authentication protocols, while others 

may not require anything at all and are completely open to all potential users.  Most, 

however, will require some form of minimal-to-medium levels of security controls due to 

low risk or consequences associated with the misuse of these systems.  Examples follow: 

Low-level example: An example here might include an unclassified 

technical trainer for tasks such as vehicle repair.  Misuse of this system would not 

be life threatening or financially onerous; therefore high levels of security might 

not be cost-effective, and create an unnecessary burden in their use.    

Mid-level example: Examples in this category include online game 

playing.  Companies receive significant revenue for providing these services to 

the public, but they are also popular targets for malicious or over-enthusiastic 
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hackers. Lack of security can result in degraded game play as some participants 

exploit security weaknesses in the system. As a result, overall enjoyment of the 

game by the public is reduced, and the service provider’s revenue suffers 

accordingly. 

High-level example: Examples in this category might include a VE 

intended for use by battlefield commanders for information visualization during a 

conflict.  The information provided may be used to develop sensitive tactics and 

decisions, and would require protection; but a requirement for mobility and 

dynamic capabilities may call for a trade-off in reduced security capability.    

Very high-level example: A VE used as part of a national strategic system 

for visualization of intelligence information.  Intelligence sources, sensitive 

relationships, covert operations could all be gleaned from information available in 

the system, and thus would require the utmost in security protection. 

Two other dimensions to VE security are multilevel security and com-

partmentalization.  For example, a military application of a VE could be designed to 

allow senior commanders to possess sensitive intelligence information while denying it to 

personnel at lower levels of the chain–of–command, even though both are present in the 

same area of the virtual environment. 

C. OVERVIEW OF VIRTUAL ENVIRONMENTS 

A VE is an environment in which physically separated participants have the 

ability to see, communicate, and ‘physically’ interact with each other within a computer-

generated world.  A feeling of a shared space and time are prerequisites. 

In a VE, each user controls one or more entities.  These entities are represented 

inside the virtual world by a visual model that all other users can see and interact with.  

The design of the VE application determines the level of realism and interaction 

experienced by the participants through such features as its physics-based model 

foundation, rendering, and rules of interaction. 

This section presents a brief overview of VEs, including their desired 

characteristics, basic architecture, and quality of service concerns.  We conclude with a 
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brief overview of RTEVEs.  For a detailed discussion of what VEs are, and their 

architecture, design and potentials, refer to [Capps97], [Macedonia97], or [Singhal99]. 

1. Characteristics of an Effective VE 

Capps and Stotts [Capps97] list attributes of an effective VE architecture, 

classifying them into four categories:  network topology, interoperability, composability, 

and rapid evolution.  They stated the difficulty of simultaneously addressing attributes in 

all four categories, and that the then-current examples of VE architectures were deficient 

in one or more of the categories.  This evaluation still holds true today, and may continue 

to do so. 

Network Topology.  A good topology will allow for large, if not infinite, 

scalability in the number of participants in the VE.  It will allow for a graceful 

degradation of the simulation, in the event that any network resource is lost.  It 

must also ensure adequate performance for each participant regardless of the 

communication capabilities they possess (e.g., T1, ADSL, and modem). 

Interoperability.  The ability of one VE to transfer an object to another VE 

without the loss of information is a highly desired attribute.  Control of the object 

must be transferable, including the physical and behavioral properties.  If an 

object explodes in one VE after a certain sequence of events, then the same object 

should be able to explode in the other VE given the identical circumstances. 

Composability.  It should be possible to easily create a VE through the 

union of two separate VEs.  The new VE’s functionality would be comprised 

completely of the functionality sets of the two original VEs.  This resulting VE 

would literally be a union of the two parent VEs in every way, both at start-up and 

during runtime, without undesirable emergent properties. 

Rapid Evolution.  The ability to rapidly incorporate new technology into a 

VE with a minimal degree of modification to existing components is essential for 

ease of modification, research, and expansion.  For example, creating a module 

with the new desired behavior and simply adding the module to the VE with little 

modification elsewhere in the application.  
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To date the only attribute that has been reasonably well implemented is that of a 

network topology. 

2. Special Case:  Runtime Extensible VEs (RTEVEs) 

Traditional VEs are considered non-extensible (i.e., static) in that new types of 

objects and functionality cannot be incorporated in them while they are executing.  In 

order to add new functionality and objects to conventional VEs the application must be 

halted, the new item added to the database or application, and then application restarted.  

In contrast, an RTEVE permits the runtime introduction of new objects and functionality, 

thus allowing for the runtime extensibility of the system, without stopping and restarting 

the application.  If an executing application has a need for previously unknown capability 

or object the VE’s database can be updated with the new information, and the VE 

application can load this information at runtime. New code components can be loaded 

from the database, and therein lies the major new vulnerability of RTEVEs: code 

modules may maliciously attack the VE. However, this extensibility trait is essential for 

VE applications that cannot be halted to update their capabilities and data sets.  To date, 

the only visual RTEVEs in existence are hosted within research institutions. 

3. Architecture 

A distributed VE is comprised of four basic components: copies of the VE ap-

plication, workstations, database(s), and a network.  In general, there are multiple copies 

of the VE application residing on multiple workstations that tap into a database for 

information and share data over a network.  The data that is to be shared may be a 

combination of administrative communications, entity-data updates, and streaming video, 

audio, or other data.  For maximum effectiveness and utility, the overall architecture must 

allow for unrestrained data sharing and operation within the QOS constraints that are 

decided upon by the developer or user of the application VE.  These QOS constraints are 

discussed in detail in section C.3. of this chapter.     

VE Application.  A VE application must be able to accurately maintain 

state information for however many entities are present within the area of view of 

the host entity of that application.  It must correctly maintain each entity’s state, 

respond appropriately to user input, and display accurate views of the portion of 
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the environment we are interested in.  Finally, it must also manage the 

transmission and reception of data and support communications. 

Workstations.  Every VE application must run on a workstation, each one 

equipped with appropriate networked multimedia capabilities (e.g., network 

connection, graphics card, and sound card). 

Database.  There must be one or more databases or repositories, either 

centralized or distributed, that contain data needed for every application should 

have access to.  This information is used to create the environment (e.g., terrain, 

structures) and every possible object that can exist.   

Network.  The design of the network communication infrastructure is 

crucial to the workings of the VE.  An infrastructure design is application 

dependent; that is, the needs of the VE will determine what the design will look 

like (e.g., reliable vs. unreliable data communications).  In general, there will be 

administrative processes that require reliable communications, typically in a 

server-client based structure using TCP/IP communications.  Likewise, entity 

state updates that require a constant transmission of entity state protocol packet 

data units (ESPDUs) between all participants might find a multicast protocol 

useful, especially in environments where participant numbers is large, and the loss 

of some packets will not impact the performance of the system because newer 

packets are not far behind.    

4. Quality of Service Concerns 

The illusion of real-time interaction is a requirement for a VE, an effect that is 

sometimes described as presence.  This illusion is influenced by the rate at which a VE’s 

screen representation is updated and the degree to which interactions with objects in the 

VE appear to be instantaneous and natural.  If the entity update rate is too slow, the VE 

appears to be jerky and therefore the user lacks a sense of presence. The generally 

accepted standard update rate for a VE is 30 Hz; at lower rates the human eye begins to 

notice non-continuous motion. [Grabner01] This originally required that an entity’s state 

information be updated at the same rate as the VE.  However, it was soon recognized that 

the visual representation on the screen could be decoupled from network entity state 
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updates via dead-reckoning algorithms or other techniques. Since entities tend to keep 

doing what they’re already doing, we can make intelligent guesses about their current 

state even without constant entity state updates from the network. The use of network-

based entity state updates in general means that network QOS has a significant impact on 

perceptions of presence. The basic network QOS concerns as identified by [Black00] are: 

bandwidth, delay (also known as latency), jitter, and traffic loss.  This thesis concentrates 

on the QOS areas of Bandwidth and Delay. 

a. Bandwidth  

Bandwidth is quantity of data delivered by the network to a host per unit 

time.  Different network hardware technologies have different speeds. In common public 

usage at this time the bandwidth available ranges from 56 KBS dial-up modems to 1 

gigabit per second Ethernet connections.  The choice of which network technology to use 

depends on many factors, including cost and distance limitations.  VE systems must take 

these issues into account in order to develop an appropriate data sharing protocol that 

avoids network bandwidth saturation, and consequently loss of near real-time 

interactions.  The application-controlled items that affect this area the most are the size 

and number of data packets that are being transmitted within the network.  

Generally speaking, more participants in a VE require more bandwidth, 

since the greater numbers of entities require more state updates.  Higher fidelity VEs with 

more frequent entity state updates can also require higher bandwidth.  Some VEs include 

interactive audio or streaming video, which can tax the bandwidth budget.  All these 

factors must be taken into account when designing the capabilities and architecture of the 

VE. 

b. Delay 

In order to maintain an acceptable level of synchronization between the 

participants of the VE, delay has to be within acceptable limits.  Delay can be broken 

down into two types: network delay, and application delay.     

Network Delay.  Network delay is the amount of time that a bit takes to 

pass through the network from one workstation to another.  It is the delay induced 

primarily by the constraint of signals traveling through the network.  This varies 

depending on the network technology (e.g., lasers, fiber optic lines, copper lines, 
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satellite radio transmissions).  Network delay is bounded at the lower end by the 

speed of light, which is approximately 8.25 milliseconds per time zone 

[Cheshire96].  Communications via geosynchronous satellite require a round trip 

to orbit and back, a distance of about 50,000 miles or about 500 milliseconds of 

latency. This is only the theoretical lower bound; actual network delay is often 

much higher due to delays introduced by the networking equipment or 

communications that occur at less than the speed of light.  Further details can be 

found in [Comer00].  

Application Delay.  Application delay is the amount of time that the 

workstation itself takes to process the information from the point of identifying 

the necessity to transmit the data, to the time a packet is formed, is processed by 

the operating system, and is actually placed on the network.  Consequently, it also 

includes the time between the packet’s receipt from the network by the destination 

host, to when the actual data is received by the application’s function that requires 

the needed data; this period includes the time needed to process the packet, and 

remove and hand the data to the necessary module in the application.  Every step 

that the data must go through when in the operating system and in the application 

will induce added delay.  Excessive cumulative delay can make it difficult to 

maintain a synchronized interactive VE.  

Latency and delay must be kept within an acceptable, pre-established 

window that will ensure the desired level of world-consistency and feeling of presence; 

the illusion of real-time interaction is difficult to maintain if these are too great.  As 

discussed, there are many factors to take into account when determining the possible 

latency and delay that may be present in a system.   

D. OVERVIEW OF AN RTEVE (NPSNET-V) 

This section provides a brief history and introduction of NPSNET-V.  Here we 

dissect NPSNET-V into five functional areas that are of concern when dealing with 

information assurance. 

1. Background 

The NPSNET program of the Naval Postgraduate School started in 1990 as a 

research platform for networked virtual environment technology.  It is now in its fifth 
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iteration and known as NPSNET-V.   As stated by McGregor and Kapolka, the dream of 

NPSNET-V is for it to be “…a framework for fully distributed, component based, 

persistent, networked virtual worlds, extensible at runtime and scalable to infinite size on 

the Internet.” [McGregor01]   

 In the course of designing and implementing the original architecture of 

NPSNET-V, the developers realized that a unified hierarchical component framework 

was required to realize the goals of the program; this prompted a complete change in the 

structure of the application.  For details on the original architecture of NPSNET-V, refer 

to [Washington01] and [Wathen01].   

A full description of the NPSNET-V architecture and interactions would be too 

extensive for the scope of this work; therefore, only an overview of the component areas 

that play into the security scope will be covered.  For a more detailed description of the 

program and the current architecture of NPSNET-V, refer to [Capps00], [McGregor01], 

and [Kapolka02]. 

2. Functional Component Areas 

Programmed using the Java object-oriented language, NPSNET-V is not a virtual 

world system itself, but a component-based framework used to build virtual worlds by 

combining functional modules in manners that produce desired characteristics.  The run-

time extensibility of NPSNET-V is achieved through the ability of incorporating these 

functional modules into the system during runtime without the need to halt the system, 

and without prior knowledge of the individual module behaviors.  This allows for entirely 

new behavior to be added to the VE ‘on-the-fly.’  In terms of exploitable areas, 

NPSNET-V can be divided into the five functional areas identified in Table 1, and 

explained below.     

Table 1.   Areas of RTEVE Functionality 

Area Description 
Configuration Files The file that contains the ‘blueprints’ for the VE 
Communications The communication infrastructure of the VE 
Database The database of all necessary data for the VE 
Components The functional code modules that are used to build the VE and  

 its capabilities 
Temporal The time coordination system 
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a. Configuration File 

Each virtual world built using the NPSNET-V architecture requires an 

XML configuration file that delineates the behaviors and structure of the world.  This file 

is a template used by the NPSNET-V application to build the internal hierarchical 

component structure of the desired VE.  The file identifies world-state information, as 

well as the name of components needed for the structure nodes.  The application then 

downloads and assimilates the needed modules into the component framework.  An 

example configuration file and description is contained in appendix A.     

b. Component Framework 

NPSNET-V uses a component framework to maintain a hierarchical tree 

structure of interconnected functional components; this tree is anchored about the 

‘kernel’ of the application, which contains a common, basic set of services primarily 

related to loading new components.  An XML initialization file that is unique to each 

application loads components necessary for that application. During runtime, the 

capabilities of the application can be extended by the incorporation of new component 

modules into the framework as they are needed. 

These components include modules such as models, which represent the 

abstract internal state of entities; controllers that are used to implement communication 

protocols;; views, which are responsible for visually displaying objects.  Since the 

application is built on Java technology, Java archive (Jar) files are used to hold the class 

objects for these modules.  

During execution, an application may require a previously unknown 

component.  Armed with the name of the component, the application communicates with 

an LDAP server and retrieves a URL that identifies the location of that component’s Jar 

file.  It then retrieves the component and incorporates it into the runtime component 

structure.   

Figure 1 depicts an example NPSNET-V application with the hierarchical 

component structure.  This is a visual depiction of the application created by the 

configuration file in Appendix A.  Note that the ‘base.xml’, ‘gui.xml’, and ‘dis.xml’ are 

included configuration files, but their tree structures are not depicted. 
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Figure 1.   Example NPSNET-V Application Structure 
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the requisite database structure to support it.  In general, there are three types of databases 

required. The first maintains the XML configuration files.  The second are LDAP servers 

that contain the URLs needed for component discovery.  The third is the support database 

structure comprised of multiple HTTP servers that contain the component archive files, 
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d. Network Communications Architecture 

Multiple types of communication channels are formed throughout the 

course of an application’s life; from reliable TCP connections to unreliable UDP 

connections, including multicast and broadcast.  These communication paths fall within 
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with required exchanges necessary for the proper functioning of the application.  These 
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The second style of communications is that of peer-to-peer entity state 

update transmissions over reliable or unreliable communications methods such as 

multicast or UDP connections.  These entity state update communications are the heart of 

the distributed nature of a VE, and often contain information such as the entity position, 

orientation, or speed.  In the Distributed Interactive Simulation communications protocol 

defined by IEEE standard 1278.1, a packet that contains this information is referred to as 

an Entity State Protocol Data Unit, or ESPDU    

The third form of communications includes the passing of object code 

modules, terrain data, and streaming audio/video from HTTP and specialized servers.  

These data will also be transmitted over a combination of reliable and unreliable 

connection methods. 

Figure 2 depicts an example of the network connections that may be 

formed during a typical session.  The dotted lines indicate unreliable multicast channels 

used to transfer entity state updates and interactions between peers.  Solid lines represent 

the transient reliable connections used to download resources from the World Wide Web, 

to store and retrieve configuration data from the LDAP service, and to access custom 

servers. 
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Figure 2.   Overview of Network Connection (From Ref [Salles02]) 
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e. Temporal Information 

In order to create a synchronized space in which participants can 

accurately collaborate and interact, a shared ‘time-space’ must exist. Hosts on TCP/IP 

networks typically have system clocks, but these clocks are notorious for not being 

synchronized. The Network Time Protocol (NTP) is a standards-based service that can be 

used to synchronize system clocks distributed on the Internet to a common time 

[Mills99].   A TimeProvider module can be incorporated into the NPSNET-V framework; 

this module will supply a time service based on however the module is implemented, 

typically by querying the system clock on the local host.         

E. VE SECURITY EFFORTS AND RELATED TECHNOLOGY 

Computer, network, and database security have all been the subject of much 

research.  However, the ever-increasing complexity of computers and the perseverance of 

hackers ensure that these will continue to be relevant areas of discussion. General 

network and information assurance issues that transcend systems have been well 

researched; refer to [Jayaram97] and [Landwehr94].     

As for VE security, limited research has been performed.  Deployed systems often 

either ignore security completely or run on trusted networks and hosts that have limited 

access.  As VEs have become more widespread and developed revenue-generating 

business models security has become more important.  In the research community, VE 

security has generally been treated as an afterthought or of low priority in relation to 

other issues, such as performance and reliability.  SIMNET [Singhal99], which had a 

genuine security requirement, addressed security through measures external to the VE. 

Bamboo [Smith00] is an exception; it included digital certificates to authenticate 

components loaded across the network.  The development of viable business models in 

the environment that the research community ultimately serves, along with advancing 

hardware and the ubiquity of the unsecured public Internet, have increased interest in VE 

security.  Research and training venues in the past have been protected via physical 

computer security and identification and authorization schemes inherent in the host 

operating systems, as with SIMNET.  Moreover, some research has been conducted in the 

area of distributed computing security, which shares many characteristics with visual VEs 

such as a distributed model in which every host may contain some resource that must be 
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shared with other participants for the proper functioning of the system.  Particularly 

notable in this field are the efforts surrounding Grid computing, which will be discussed 

in section E.2.b of this Chapter. 

We now turn to an overview of areas of security research that are applicable to 

VEs.  It must be noted that this is not an exhaustive listing, but a representation of the 

subject domain.   

1. Information Assurance Overview 

As depicted in Table 2, IA encompasses the five areas: of secrecy, integrity, avail-

ability, non-repudiation, and authentication [NSTISSC00], [DOD96]. All five remain 

concerns throughout the life cycle of a VE.  Each one will be addressed to varying 

degrees through the security policy that is decided upon by the owner of a VE or its user.   

 

 
Table 2.   Areas of Information Assurance (IA). 

 

a. Integrity 

This area is concerned with preventing the unauthorized modification of 

data. Data can be maliciously modified in attempts to destroy the data, mislead users of 

the data, or, in the case of executable code, perform functions that were not intended by 

the original author. 

b. Confidentiality   

This area is concerned with preventing the unauthorized viewing of data.  

Data in memory or flowing in networks is available to be retrieved/intercepted and 

viewed.  Sensitive information must be protected from this possibility.  In some situations 

this may include information in IP packet headers that contain information on sending 

and destination IPs.  Through traffic analysis, attackers can determine a large amount of 

Area Description 
Integrity Prevent unauthorized modification of data 
Confidentiality Prevent unauthorized viewing of data 
Availability Ensure system/data is available for its intended use 
Non-repudiation Ensure a user cannot refute information they placed into the system 
Authentication Ensuring a user/module is who they say they are 
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information about a network, such as which nodes are more important than others, which 

ones are active at any one time, and the level of activity of the organization.     

c. Availability   

This area is concerned with ensuring the availability of a system and its 

data for the intended use.  If the system is disrupted by an outage, equipment failure, or 

disruptive denial of service attack then the system is no longer functional and provides no 

benefit. 

d. Non-repudiation   

Non-repudiation refers to the inability of an entity to deny having 

performed some action, or have provided some piece of information.  In the case of IA, 

this refers to being able to legally hold users accountable for information that they 

provide.  It also encompasses the inability of a recipient to deny having received a piece 

of information. 

  This area is concerned with preventing a user from providing 

information, and then later deny having done so.  This issue has special importance in 

systems that use provided information for sensitive operations, especially ones with legal 

ramifications, and accountability is an issue. 

e. Authentication   

This area is concerned with ensuring that an entity or component is 

actually who/what they identify themselves as.  This is the prime way of ensuring access 

only by authorized users.  There are three ways to authenticate:  through something that is 

possessed (e.g., smartcard), through something that is known (e.g., password), or through 

something that the entity is (e.g., biometrics) [Liu01]. 

When deciding upon a security policy and what mechanisms to implement, 

consideration of their impact on the QOS concerns previously mentioned must be taken 

into account. If, for example, encryption is decided upon for confidentiality of network 

communications, then consideration must be made to the fact that any form of encryption 

will induce some latency on the transmission of ESPDUs.   

2. Security Research Efforts 

There has been much security-related research performed, and a comprehensive 

listing and examination of them is outside the scope of this thesis. Therefore, an effort 
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has been made is to identify the good portion of the available research that is pertinent to 

the problem domain of VEs.  The following is merely an introduction to these efforts. 

a. On-line Game Industry Efforts 

An industry that relies greatly on VEs and has to deal with a myriad of 

security issues specific to their context is that of the on-line game industry.  Their issues 

with security revolve mostly around denial-of-service (DOS) attacks and a plethora of 

hackers/cheaters.  Their problem is an interesting one in that they need to balance the 

need to be available to anyone interested, but still protect the gaming experience of the 

honest players.  Various mechanisms have been employed by games such as UltimaTM 

and Age of EmpiresTM, but many are proprietary and protected from publication.  For 

more information concerning these efforts, refer to [Pritchard00].  

There is an area of the on-line-game industry that is akin to visual 

RTEVEs; that of Multi-User Dungeons (MUDs).  These are essentially text-based 

RTEVEs that have been in existence for over twenty years [Curtis94].  Other than being a 

form of VE, there similarity with RTEVEs rests in the characteristic of run-time 

extensibility, as new rooms, objects, characters, and behaviors can be added to the world 

without turning it off.  Some MUDS are provided rudimentary security through the need 

to register in order to have access to the MUD [Albert94].  

b. Grid Computing Technology 

[Foster01] defines the Grid problem as “…flexible, secure, coordinated 

resource sharing among dynamic collections of individuals, institutions, and 

resources…[what can be referred to as] ’virtual organizations’”.  The resource sharing 

that is referred to goes beyond the traditional idea of data transferring.  This concept 

actually refers to the ability of direct access to data, computing resources, and 

applications at remote systems/networks for the purpose of solving a problem.  This 

entails interconnecting and resource-brokering amongst many different entities, each of 

which will want control over just what is shared, with whom it is shared, and to what 

extent it is shared.  This creates numerous complex security concerns, such as 

authentications, authorization, and access control.  

Security efforts in Grid technology are ongoing.  This technology tends to 

incorporate other basic security technology into a comprehensive system for Grid 
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distributed computing.  These efforts have primarily focused on authentication, access 

control, integrity, and confidentiality.  Refer to [Foster98a], [Foster98b], and [Foster01] 

for more information and details on Grid computing and its associated security efforts.  

The distributed nature of the resource sharing technology in Grid 

computing has potential for being the base of an RTEVE infrastructure. Consequently the 

associated security mechanism would also have applicability.     

c. Symmetric and Asymmetric Encryption 

The two standard forms of encryption used to protect data both on a 

computer and over network communications.  Symmetric encryption deals with one key 

that both parties possess while asymmetric deals with two different but mathematically 

related keys (public and private) in which each key can be used to decipher data 

encrypted by the other.  Symmetric encryption is much faster than asymmetric, but 

requires an already secure infrastructure for key distribution.  Asymmetric encryption, on 

the other hand, is much slower than symmetric encryption, but distribution is much 

easier.  Refer to [Simmons79] for more detail. 

Public key infrastructure (PKI) is based on asymmetric encryption and is 

the predominant method of secure communication over the Internet. Refer to 

[Younglove01] for an overview of PKI. 

d. Intrusion Detection Systems (IDS)  

These systems are designed to identify malicious activity, preferably as it 

is occurring.  There are two forms of IDSs: signature-based and anomaly-based.  

Signature-based systems function by monitoring activity on a network, either real-time or 

through an audit log, and looking for a pattern that matches known intrusion signatures.  

Anomaly-based systems are designed to identify malicious activity, novel or known, by 

looking for departures from the known normal operating behavior of the system.  

Anomaly-based systems hold the greatest promise for complete coverage of intrusion 

detection, but the complexity of the problem domain is quite high and thus these systems 

are still not quite robust.  Please refer to [Forrest97], [Stillerman99], and [Vigna98] for 

examples on IDS research. 
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e. Access Control 

The need to constrain entities to only those resources which they are 

authorized to be exposed to is an important attribute for sensitive applications that 

involve collaboration between groups of varying security authorizations.  Access control 

mechanisms have been implemented that address this issue directly in the context of 

CVEs, VOs, and other non-visual VEs.  Please refer to [Bullock99] and [Pettifer01] for 

example implementations. 

f. Watermarking 

Interesting research in the area of 2-D image and 3-D model watermark 

technology has been performed. Please refer to [Benedens99] and [Berghel97].  This 

technology holds some promising possibilities for future data integrity applications 

within VEs; for instance: the possible development of code module watermarking 

techniques that could be used to identify authorship or ownership, or even to identify a 

modified code module. 

g. Object Signing 

A subset technology of PKI, it can be used to ‘sign’ objects in order to 

ensure their authentication after transfer through a network and can be used as a method 

for ensuring non-repudiation of those objects.  [Smith00] details an implementation of 

this technology for the BAMBOO system. 

h. Secure Multicast 

The use of multicast in a large-scale VE is almost a requirement.  A fair 

amount of research into secure multicast capabilities has been performed to address the 

concern of confidentiality.  Much of this research concentrates on the infrastructure 

needed for cryptographic key-distribution to all participants.  Please refer to [Molva00] 

and [Abdalla00]. 

i. Message Digests and Message Authentication Codes (MACs) 

Message digests and MACs are used for data integrity verification 

purposes. In the case of a data packet, a message digest is produced by running the 

packet’s contents through a hashing algorithm.  This algorithm produces a signature 

(digest) that is usually unique to the given data.  The digest is then sent with the data.  

The receiver of the packet then also runs the packet’s data contents through the same 
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engine, and produces another message digest.  If this new digest is different from that 

provided by the sender, then the data is deemed to have been modified and is not the 

authentic message.  This is usually only effective for non-malicious modifications.  An 

entity that desires to purposely modify a message would just need to generate a new 

message digest and replace both the digest and the message in the packet, and the 

message would be accepted.  

MACs are similar to message digests; however, the algorithm uses a 

symmetric cryptographic key for either encryption of a message digest, or for the 

computation of the digest itself.  Both the sender and receiver must possess the same key 

to develop the matching MACs; otherwise, authentication is impossible.  While this 

ensures message integrity, it does not ensure non-repudiation, since more than one entity 

has access to the key used to encrypt the message digest. For more detailed information 

please refer to [Stallings99] and [FIPS198]. 

The security of message digests can be considerably increased through the 

use of public-key encryption by encrypting the original message digest with a private 

key, thereby ‘signing’ the message digest.  A malicious entity would need to have 

possession of the sender’s private key in order to ‘sign’ a new message digest of the 

modified data. This adds the feature of non-repudiation in addition to maintaining 

integrity, and thus is sometimes called a ‘digital signature.’   

F. TECHNOLOGY USED FOR NPSNET SECURITY MANAGEMENT 
SYSTEM (NSMS) 

1. Java Application Programming Interface (API) 

As stated earlier, NPSNET-V is programmed using the JAVA API developed by 

SUN Microsystems.  It is an object-oriented language that, when compiled, produces byte 

code that can be run on any machine-type that has the Java Virtual Machine installed.  

This cross-platform capability makes it desirable for large-scale distributed systems such 

as VEs.  For a more detailed discussion of Java refer to the Sun Microsystems Java 

website at http://java.sun.com, or [Flanagan99]. 

2. Java Security API 

The Java language provides many capabilities for use in protecting Java-based 

applications, as well as protecting host operating systems from java applications.  Since 
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the purpose of this work is to concentrate on application-to-application interactions, the 

security of the operating system from java applications is assumed to be adequate and 

therefore not implemented.   

This API, and several extensions to the API, also provides numerous mechanisms 

for information assurance efforts; including: a Secure Socket Layer (SSL) 

implementation, Public/private asymmetric and secret symmetric key generation using 

common key generation algorithms, and message digest and MAC engines.  The two 

extensions that were primarily used in this work are: the Java Secure Socket Extension 

(JSSE) and the Java Cryptography Extension (JCE).   

a. Java Secure Socket Extension (JSSE) 

JSSE is an API used in the creation and implementation of Secure Socket 

Layer (SSL) sockets for encrypted reliable Transport Control Protocol (TCP) server-

client communications over the Internet.  Using PKI-based asymmetric public/private 

keys and certificates, the server and clients authenticate each other.  During the ensuing 

handshake, they agree upon a particular symmetric key to use for the remainder of the 

connection, thus allowing for speedier secure communications.   

In order to create SSL connections, each member of the connection must 

have a public/private key pair, and a certificate that contains the public key that is signed 

buy a certifying authority.  The Java Security API provides a tool called the ‘KEYTOOL’ 

that is used to create a ‘KeyStore’ and the public/private keys, and a ‘TrustStore’ that 

holds the certified certificates that are trusted by the owning application.  The 

‘KEYTOOL’ service is also used to generate the certificates that contain the public key.  

For more detailed information on the creation of these items and the associated keys, 

please refer to [Scott01].  

b. Java Cryptography Extension (JCE) 

The JCE is the API used for the creation and manipulation of 

cryptographic keys, both public/private asymmetric keys, and secret or symmetric keys.   

In particular, this API was used for the generation of symmetric keys used in ciphering 

features of the NSMS.  These keys are generated using one of many different algorithms 

that is provided to the key generator object and passed to the cipher engines.  
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The use of the Java Security API and its two Extensions were vital to the 

implementation   described in Chapter 4 of this work.  These APIs are robust and allow 

for inclusion of expanding security packages from outside security providers.  For more 

information refer to the Sun Java web pages at http://java.sun.com/security, and 

[Scott01]. 

3. Extensible Markup Language (XML) 

XML is not really a language, but a standard for creating languages that meet 

XML criteria.  XML is a hierarchical, extensible meta-data based markup language.  It is 

hierarchical in the sense that the data is structured in a parent-child, tree-style fashion.  It 

is extensible in the sense that the developer of an XML-based language can increase the 

type of different data that his language can function with.  In addition, it is meta-data 

based in the sense that every piece of data in the file must be ‘described’ by using a 

descriptive tag that is associated with the particular data item.  For more information on 

the details of XML, refer to [Hunter02]. 

As stated in earlier sections, NPSNET-V is a framework architecture on which an 

RTEVE is built.  XML-based configuration files provide the hierarchical blueprint 

needed for the proper initialization of a desired NPSNET-V world. 

G. SUMMARY 

This chapter provided an overview of VEs and RTEVEs, discussing their 

architecture and the QOS concerns that affect them; this discussion concluded with a 

breakdown of NPSNET-V into its five functional areas.  Security of VE was also 

introduced, along with a discussion of why it is an important area of research.  The five 

areas of Information assurance were presented, as well as brief discussion on several 

security-related research topics that are applicable to the security of VEs.  This section 

concluded with a brief overview of the technology that is pertinent to the development of 

the NSMS that will be presented in Chapter IV.   

The next chapter presents a taxonomy of RTEVE security areas, based on the 

research covered in this chapter.  It is followed by two matrices that can be used to better 

understand weaknesses in the identified areas, and possible mechanisms that can be used 

to address them. 
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III. TAXONOMY OF RTEVE SECURITY  

This chapter provides a thorough review of security issues within the realm of 

RTEVEs, using the NPSNET-V RTEVE discussed in the previous chapter as a case 

study.  It first presents security concerns with relation to the five areas of RTEVE 

functionality, and then to the five areas of IA.  Subsequently, it will present a taxonomy 

of RTEVE security areas through the form of a 5x5 matrix.  Two subsequent matrices 

will present scenarios that will clarify the areas, and mechanisms that can be used to 

address the identified areas.  It should be noted that these matrices are merely the 

beginning of a taxonomy for RTEVEs.  Further research may eventually reveal that this 

taxonomy should either be expanded or contracted. 

A. SECURITY DISCUSSION OF RTEVES 

This section will present two discussions on security concerns with respect to the 

functional component areas of NPSNET-V and the five areas of IA.  These discussions 

are not meant to be all inclusion and comprehensive, but merely a sample representation 

of the concerns in the indicated areas. 

1. Security Relative to the Five Functional Component Areas 

This section reiterates the five functional areas of RTEVEs, as based on the 

architecture of NPSNET-V, and introduces a brief introduction of security issues relevant 

to each one. 

a. Configuration Files 

The security of configuration files deals primarily with their 

modification/replacement or deletion.  Deletion of the file would prevent the ability to 

use the VE for its intended purpose.  Modification of configuration file could be 

performed to include a malicious module that is then loaded by the applications and 

executed.  Replacement of the file with another file affects the availability of the intended 

VE, or may introduce unwanted behavior into the system.    

b. Communications 

Security of communications revolves around the protection of the 

communication paths and the data that travels on these paths.  This includes the 

confidentiality, authentication, and integrity of the data in the network, as well as the 
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information that the traffic of the network can convey through analysis efforts.  Non-

repudiation plays a factor when accountability of what is communicated is of concern.    

c. Database 

Security of the database deals with the protection of the data stored within 

the database architecture of the system.  This includes all portions of the VE that require 

storage (e.g., Jar files, terrain data, streaming audio/video data). 

d. Components 

This section deals specifically with the security of the application kernel 

and the individual byte-code component modules that are used to build the VE 

applications.  Since these are executable modules, inclusion of malicious functionality 

would have far reaching consequences, especially if the size of the VE is extensive and 

all applications are downloading it; a virus could be spread almost instantaneously to 

potentially thousands of users.  Also, if a needed module has been deleted, the 

availability of the system would be degraded because the desired functionality is no 

longer present.   

e. Temporal 

A common, coordinated time-space is critical if the real-time 

synchronization of participant interaction is desired.  By manipulating the individual 

‘time-space’ of some participants and not others, a malicious entity can effectively 

destroy the temporal consistency of the VE, thus reducing or destroying its interactive 

capability.      

2. Security Relative to the Five Information Assurance Areas 

This section reiterates the five areas of IA, and provides a discussion on their 

relevance within RTEVEs. 

a. Integrity 

Integrity of the areas of an RTEVE is of primary concern.  If components 

and data of a system can be modified, then confidentiality and availability can easily be 

subverted by a knowledgeable hacker, either through direct manipulation, or the use of a 

virus/worm.   
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Integrity of the XML configuration files is crucial for the proper operation 

of a VE.  Any unauthorized modification of its contents would alter the intended 

functionality of the VE, and possibly cause malicious code to be incorporated into the 

VE.  

The extensible nature of RTEVEs makes them vulnerable to maliciously 

modified modules. If a trojan horse were substituted for a legitimate component during 

transmission or in the database, all receiving applications would be subverted, resulting in 

undesired modified behavior.  

The integrity of ESPDUs and temporal information are also a concern.  By 

modifying the state information of participating entities, a malicious entity can ‘drive’ the 

information displayed on systems and provide misleading information.  The modification 

of temporal data can be used to reorder events, reducing the effectiveness and usability of 

the system. 

Another type of integrity attack is the so-called ‘replay attack’, in which 

the attacker records legitimate traffic, then at some later time resends exactly the same 

packets. Since the packets were at one time legitimate and were encrypted with a correct 

encryption key, the receiving system may mistakenly accept them, resulting in the ability 

of the attacker to repeat past behaviors in the VE. 

b. Confidentiality 

The possibility of RTEVEs being used in sensitive applications 

necessitates that confidentiality be a concern.  Within this context, secrecy of both 

computer and network systems must be taken into account.  This area has an impact in 

the integrity aspect as well.  For instance, if an adversary is able to acquire a copy of a 

module/file, they then can intelligently modify the component to include behavior that 

may be detrimental to the system. 

 In the case of military applications, there will be times when participants 

of varying classification levels will have need to coexist in the same virtual world, and 

thus have access to different information based on their clearance level.  Access control 

mechanisms come in to play in these situations.   
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Information can be gleaned by the analysis of traffic flowing across the 

network.  Depending on the purpose of the application and current state of affairs, an 

increase in data transmission can signal preparations for a military action or reveal 

relationships between units.  Even if the data is not readable, an attacker can determine 

what participants are most active or most informed and use that information to determine 

target vulnerabilities. 

c. Availability 

The availability of an RTEVE could be of great importance to an 

organization that is using the system for time-sensitive operations, such as battlefield 

information visualization.  The loss of use of a system such as could result in poor and 

deadly decision.  Loss of availability could be as a result of a distributed Denial of 

Service (DOS) attacks, such as packet saturation of the communication paths; intro-

duction of code designed to shut down one or more applications; or even attacks directed 

toward physical components of the RTEVE, such as data links or workstations. 

d. Non-repudiation 

In RTEVEs that are used for sensitive, critical information, the source of 

information that is injected into the system must be able to bear responsibility for that 

information. The ability to assign responsibility to a source can be used to identify 

possible malfunctioning equipment; but, more importantly, in can be used to identify 

deliberate misinformation. 

In the context of a battlefield visualization system, if a commander gives 

the order to launch missiles on what the system shows is a hostile aircraft, but in reality is 

a passenger jetliner, the source of the information must be traceable and must not be able 

to repudiate its introduction of the misinformation.   By being able to track down the 

cause of misinformation, vulnerabilities to the system can be identified, and those 

responsible can be held accountable.  

e. Authentication 

Methods such as IP hijacking or spoofing could be employed by a hacker 

to enter into the RTEVE and observe and interact with participants.  The possibility also 

exists that a malicious entity acquires a copy of the VE applications and attempts to join a 

VE in the hopes of passively viewing the contents of the VE.  Authentication of 
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component modules is also a significant issue; we may require authentication of 

components to assure that an attacker has not substituted a modified component while the 

component was transiting the network.  The nature of RTEVEs would require the need to 

authenticate users across a distributed computing environment; necessitating, for 

example, the incorporation of PKI into the architecture. 

B. RTEVE SECURITY TAXONOMY 

This section is divided into three sub-sections.  The first introduces a taxonomy of 

twenty-five RTEVE security areas developed through an analysis of NPSNET-V and IA 

security areas.  The second subsection contains example security attacks and scenarios 

used to give the reader insight into what types of issues can be associated with each one 

of the individual areas.  The final sub-section identifies various researched security 

mechanisms that can be applied to each of the twenty-five areas.       

1. RTEVE Security Areas 

This section introduces a taxonomy that was developed by combining the five 

functional component areas of the NPSNET-V RTEVE and the five IA areas.  Each of 

the five functional areas was considered as a target by each of the IA areas. This resulted 

in twenty-five different security areas that are presented in matrix form in Table 3, below.  

Each area has a corresponding identifying code that is individually explained following 

the matrix. 
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Configuration files CFI CFAV CFC CFN CFAT
Components CMI CMAV CMC CMN CMAT
Database DBI DBAV DBC DBN DBAT
Communications CI CAV CC CN CAT
Temporal TI TAV TC TN TAT  

Table 3.   RTEVE Security Areas Matrix  
 

a. Configuration Files 

The Configuration Files grouping focuses on the configuration files that 

are used to delineate the basic structure and main components of a desired VE. 
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• CFI: Configuration File Integrity.  This area is concerned with 

protecting the configuration files from unauthorized modification; 

and, if they are modified, identifying that fact.  An attacker could 

modify the configuration file of a VE to have the applications load 

a ‘malicious’ module, or to cause the VE to function improperly.  

• CFAV: Configuration File Availability.  This area is concerned 

with ensuring that the configuration file is available for its intended 

use.  A configuration file is required for VE initialization; if the 

file is deleted or modified to prevent its use, then the user can’t use 

the system for the purpose for which it was intended.  

• CFC: Configuration File Confidentiality.  This area is 

concerned with protecting the configuration files from 

unauthorized viewing.  If a malicious entity is able to acquire a 

copy of the file, they then have the ability to intelligently create a 

malicious replacement file.  The contents of the configuration file 

might also give an attacker insight into what is being modeled; the 

existence of a certain type of aircraft entity in the configuration file 

could give the attacker an edge in predicting the nature of the 

simulation. 

• CFN: Configuration File Non-repudiation.  This area is 

concerned with ensuring that an authorized user that places a 

configuration file in the system has no way of denying that he did 

so.  If an authorized user intentionally changes a configuration file 

for some malicious purpose, there must be a capability that does 

not allow them the ability to deny having made the modification. 

• CFAT:  Configuration File Authentication.  This area is 

concerned with the process of authenticating the identity of a 

configuration file.  There must be a way to ensure that a 

configuration file in the system is indeed the correct file, and not a 

modified copy of the file.   
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b. Components 

The Components group focuses on the components that make up an 

individual RTEVE system; the main application kernel that each user must possess and 

the plethora of individual modules that are designed for each entity, behavior, and 

protocol. 

• CMI: Component Integrity.  This area is concerned with 

protecting the application kernel and modules from unauthorized 

modification; and, if they are modified, identifying that fact.  An 

attacker could modify an individual module in the system to 

contain a virus.  The virus is then easily spread throughout the 

system as applications assimilate the module. 

• CMAV: Component Availability.  This area is concerned with 

ensuring that the application and modules are available for their 

intended use. If the kernel or component is deleted, or otherwise 

modified to prevent its proper use, then the application is not able 

to function as intended and availability of the system is 

diminished. 

• CMC: Component Confidentiality.  This area is concerned with 

protecting the application kernel and modules from unauthorized 

viewing.  If a malicious entity is able to acquire a copy of the 

application or a module, they then have the ability to intelligently 

create a malicious replacement component. The contents of the 

component may also require secrecy.  The capabilities of a weapon 

might be deduced from the code that is intended to model its 

behavior. 

• CMN: Component Non-repudiation.  This area is concerned 

with ensuring that an authorized user that places a module in the 

system has no way of denying that he did so.  If an authorized user 

intentionally places a module into the system that contains 

malicious code, there must be mechanisms to ensure they cannot 
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refute that action.  Conversely if a malicious entity modifies an 

authorized module to contain malicious code, the same 

mechanisms should be able to prove the original authorized user 

was not responsible. 

• CMAT: Component Authentication.  This area is concerned with 

the process of authenticating the identity of a component, ensuring 

that it is the correct component.  Good CMAT practices will assist 

against attacks that fall in the CMI and CMAV areas.  

c. Database 

The database grouping focuses on the database structure of a given VE.  A 

database could be central or distributed; it could contain modules of code or binary data 

for terrain, or anything that could be needed within a VE.   

• DBI: Database Integrity.  This area is concerned with 

protecting the information within the database from unauthorized 

modification; and, if anything is modified, identifying that fact.  If 

an attacker were able to access and modify the database, they 

potentially can affect every application that uses its data. Equally 

as damaging would be a virus was able to that access the database 

and writes itself into every component within the database; when a 

VE is initialized and the components are transmitted to all users, 

the virus would massively propagated. 

• DBAV: Database Availability.  This area is concerned with 

ensuring that the information in the database is available for its 

intended use.  RTEVEs require the ability to access configuration 

files, unknown modules, and other data for proper functioning.  If 

these are not available for use, then the applications are useless. 

• DBC: Database Confidentiality.  This area is concerned with 

protecting the information in the database from unauthorized 

viewing.  Some databases may contain classified information, 

which requires protection.  Also, if modules within the database 
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are acquired, they can be used to design malicious modules that 

can pass for the modules within the database. 

• DBN: Database Non-repudiation.  This area is concerned with 

ensuring that an authorized user that places data in the database 

cannot deny that action.  In order to hold someone accountable for 

any harm that is caused by something placed in the database, there 

must be accountability mechanisms.  

• DBAT: Database Authentication.  This area is concerned with the 

process of authenticating the identity of a database.  If a malicious 

entity were to create a database that mimicked the real database, 

and contained accurate modules with malicious code, or no code at 

all, then the VE would be subject to attacks in the DBAV or DBI 

areas.  

d. Communications 

The Communications grouping focuses on the communications paths of 

the system and the data that rides on those paths.  

• CI: Communications Integrity.  This area is concerned with 

protecting the data passing on the communications paths from 

unauthorized modification; and, if they are modified, identifying 

that fact.  An attacker could modify the data packets of a particular 

entity to misrepresent that entity’s state in other users’ 

applications, making the entity appear in a different position or 

perform different tasks. 

• CAV: Communications Availability.  This area is concerned with 

ensuring that the data on the communications paths is available for 

its intended use, and the communications paths themselves are 

fully functional and available for their intended use.  If a an 

attacker is able to disrupt a communications link, or flood the 

communications with useless packets, then the application will be 

unable to be used for its intended purpose.  
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• CC: Communications Confidentiality.  This area is concerned 

with protecting the data on the communications paths from 

unauthorized viewing.  A party that is interested in gathering 

intelligence on what is occurring within the VE, but not disrupting 

it, may attempt to intercept the data as it is traveling on the 

communications paths and reconstruct what is occurring. 

• CN: Communications Non-repudiation.  This area is concerned 

with ensuring that an authorized user that places data into the 

communications channels has cannot deny that he did so.  If an 

authorized user places false information into a VE system, which 

results in adverse consequences, there is no way to hold them 

accountable unless a non-repudiation mechanism is in place. 

• CAT:  Communications Authentication.  This area is concerned 

with the process of authenticating the identity of the data on the 

communications path.  The ability of ensuring that every piece of 

data received off the communications paths is from an authorized 

user is an important attribute for addressing the CCI and CCAV 

areas.  

e. Temporal 

The temporal group focuses on the time synchronization system required 

to ensure that all participants in the VE are functioning with coordinated clocks.  This 

function is generally provided to the Internet through the NTP (Network Time Protocol) 

system; individual network/system can routinely update their internal clock to match true 

atomic clock time received through this system.  A dedicated time-server could also be 

used to provide a common time-space for synchronized interactions. 

• TI: Temporal Integrity.  This area is concerned with protecting 

the temporal data that synchronizes all entities with a VE.  If an 

attacker individually modifies the temporal information sent to 

each participant, then they would be functioning in different time 
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spaces within the same VE, destroying the usability for 

coordinated interaction. 

• TAV: Temporal Availability.  This area is concerned with 

ensuring the availability of VE-wide time synchronization data.  If 

the synchronization data from the time servers is blocked from 

reaching the VE users, then each user’s machine error will 

eventually cause disparity amongst all users as their workstation’s 

clocks begin to drift at varying rates.    

• TC: Temporal Confidentiality.  This area is concerned with 

protecting the temporal data from unauthorized viewing.  If a 

malicious entity were able to intercept the temporal 

synchronization to the user applications, they could develop more 

intelligent temporal attacks such as intercepting and modifying the 

synchronization data to specific users in an attempt to disrupt only 

their data or system in a manner that makes temporal sense, but 

that is not accurate.  

• TN: Temporal Non-repudiation.  This area is concerned with 

ensuring that the temporal data can be accurately traced back to its 

originating time-server.  An authorized time-server should not be 

able to refute the synchronization data that it has provided.  Also, if 

synchronization data was altered by a rogue time-server, the same 

mechanisms should be able to exonerate the authorized time-

servers and indicate such. 

• TAT: Temporal Authentication.  This area is concerned with 

the process of authenticating the temporal data from the time-

server.  There should be a way to ensure that the synchronization 

data is from an authorized time-server.  Good TAT practices will 

protect against attacks that fall in the TI and TAV areas. 
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2. Security Scenarios 

This section presents a matrix, Table 4, that identifies possible attacks and 

scenarios that would provide some understanding to the types of concerns that fall within 

each of the twenty-five RTEVE security areas.  For each attack and scenario, the security 

areas that are, or can be, affected contain the identifying number (Arabic or Roman, e.g., 

3,i) of the corresponding example.  Please note that this is not meant to be an all-

encompassing list of attacks, as the range of attacks is limitless. 
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Configuration files 1,9,ii 7,9,10,ii 11,14,ii  4 1,14,ii
Components 2,8,iii 7,8,10,iv 11,14,iii 4 2,19,14,ii,iii
Database 2,7,iii 7,10,iv 12,14,v,viii 4 1,2,14,ii,iii
Communications 3,4,vi,x 6,ix 13,15,i,vi 4 3,4,14,17,18,vi
Temporal 5,i,ix 5,vii x 4 5,ix  

Table 4.   RTEVE Security Scenario Matrix  
 

a. Simple Attacks 

This category contains simple known attacks and examples that are used 

to identify the RTEVE security areas that are affected by the attack.  Each attack is 

identified by a number, and that number is placed in the matrix presented in Table 4. 

 [1]  A malicious entity modifies the XML configuration file in the 

database to download a malicious module.  

 [2]  An entity modifies an application or module located in the 

database to include malicious code. 

 [3]  An entity that has performed an IP hijack or has subverted a 

router modifies ESPDUs in order to mislead the recipients of the packets, or 

replaces modules enroute with malicious code such as a virus. 

 [4]  An entity uses the IP of an authorized user to inject fake 

packets that create confusion in the VE. 



41 

 [5]  A malicious entity manipulates the timing information that is 

used for synchronization in order to disrupt the VE and have events occur out of 

sequence. 

 [6]  A traditional DOS attack is performed by flooding the target 

computers/networks with useless packets, thereby slowing down or halting the 

simulation. 

 [7]  The system database is destroyed, thereby removing all ability 

to locate needed modules/data. 

 [8]  Modules are modified so that their behavior is incorrect 

 [9]  Configuration files are corrupted thereby denying the ability to 

correctly configure a desired VE 

 [10]  A worm/virus modifies/destroys needed files/modules/data. 

 [11]  A malicious entity surreptitiously acquires a copy of the 

application or a module to develop malicious copies for future use. 

 [12]  A malicious entity retrieves the password file for the VE 

system.  Then uses a cracking program to break the hashes. 

 [13]  An entity uses a packet-sniffer to acquire unencrypted 

network traffic containing ESPDUs and administrative messages of the system; 

allowing them to see what the system is being used for.    

 [14]  A rogue, authorized user attains system information that is 

beyond their clearance level.  

 [15]  A malicious entity uses a packet sniffer to perform traffic 

analysis on VE network traffic in an attempt to identify what participants are most 

active and target them for further action, or to determine the general level of 

simulation activity, which could signal that some operation may be occurring 

soon. 
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 [16]  An authorized user knowingly places false information into 

the VE, or modifies a configuration files, application, or component for malicious 

reasons. 

 [17]  Man in the Middle.  A malicious entity inserts itself between 

the system and a user, in a manner where the user thinks the entity is the system, 

and the system thinks he is the user. 

 [18]  IP spoofing.  A malicious entity uses the IP address of an 

authorized user to send packets into the system so that it appears the information 

is from that known user. 

 [19]  A malicious user possesses a copy of the core application and 

is able to get accepted as an authorized participant 

b. Scenarios 

This category contains simple attack scenarios that may  be performed on 

an RTEVE system.  The areas of attack that are covered by these scenarios are identified 

in the matrix by the scenario’s Roman numeral.  

[i]  A malicious entity establishes a time-server and manages to 

have it replace the real time server for a particular VE.  He then analyzes the 

generated traffic on the communications channels and identifies which ‘users’ are 

producing the most updates.  He then manipulates the time information being sent 

to those identified systems, causing their synchronization to change relative to the 

entire VE; this causes the entities of the VE to no longer share the same time-

space.  Users may or may not be able to identify the miss-synchronization, and 

poor decision can arise. Additionally, the mismatch may cause a host to reject 

time-stamped packets for being too old. 

[ii]  An entity acquires a copy of a configuration file, and modifies 

it so that an applications requires a module containing malicious code that resides 

on a database created by the attacker.  He then manages to replace the original 

configuration file with the modified, malicious copy.  The configuration file is 

retrieved by other users and the malicious module is downloaded.  The module 
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turns out to be a trojan horse that contains code that, at a specific time, will cause 

the system to shut down, thus terminating the VE. 

[iii]  Having detailed knowledge of specific module used by a VE, 

a malicious entity develops a virus that will search for that particular module in a 

database and modify it to contain code that will retransmit every ESPDU received 

by the host application to a system set-up by the attacker.  The attacker then finds 

some way for the virus to be placed on the system (i.e., e-mail, an unwitting 

authorized user installs free software, etc.).  The virus is executed and the module 

is modified directly within the database.  A VE is then initiated that requires that 

module, and now every instantiation of the module is transmitting ESPDUs back 

to the malicious entity.  The entity now sits back and watches what is happening.   

[iv]  A system that contains the database of modules for a specific 

VE, is infected with a worm that destroys all data on the system.  The entire 

database is destroyed, and there are no other copies. 

[v]  A virus somehow is placed on a system that contains a 

classified terrain data server for VE systems.  When the virus is executed, it is 

able to read the data from the server and transmits it back to the virus’ creator.  

[vi]  A malicious entity subverts a number of key routers in the 

network and monitors the traffic, looking for a particular entity’s ESPDUs.  When 

he sees one, he modifies the data in the ESPDU in an effort to manipulate the VE 

to his own ends, and transmits the modified packet.  All receivers of that packet 

now have an incorrect state for that entity.   

[vii]  An entity removes the time-server for a system, causing the 

systems to rely on their own internal clocks.  Over time, the time difference 

between machines grows to a point where coordination is difficult, if not 

impossible within the VE, and the VE loses its ability to be used. 

[viii]  In a research and development world, a corporate cyber-spy 

infiltrates the database of a weapons manufacturer that uses a VE to develop the 
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weapon in a collaborative environment.  He hunts down the information that 

describes the behavior and performance of the system, then quietly disappears.  

[ix]  A VE is being used as a battlefield visualization system 

during a military campaign.  The adversary in the campaign identifies the 

communication paths of the system and manages to disable the necessary routers, 

thereby denying the use of the system to the field commander.  

[x]  An American commander uses a battle-field visualization 

system as an early warning system for incoming missiles.  The enemy launches a 

missile and desires to mislead the US forces in order to enhance the chances of 

success.  The enemy manages to subvert the workstation of the system that is 

tracking the missile and placing ESPDUs into the VE system.  The enemy also 

can see the synchronization stamp provided by the time-servers.  By manipulating 

the time stamp of the outgoing packets that contain the information on their 

missile, they cause the commander to believe that the missile is slower than it 

really is.  The commander is then surprised/confused when the missile enters the 

close-in detection system possibly leading to confusion/uncertainty.  Even if the 

missile is successfully defended against, the commander subsequently loses 

confidence in the information provided by the system. 

3. Security Measures 

This section presents a matrix, Table 5, which identifies a sample of available 

security mechanisms and technology that can be applied to each of the areas.  This listing 

is not comprehensive, but merely illustrative.    
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Table 5.   RTEVE Security Measures Matrix  
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a. Encryption  

Encryption techniques fall within the two different key structures 

explained in Chapter II, section E.2.c.  Please refer to that section for details on 

symmetric & asymmetric encryption. 

Networks can be encrypted in various methods.  Two of the most common 

are end-to-end and link encryption.  In end-to-end, the encryption and decryption of the 

data occurs at the individual workstations themselves, and therefore the packet headers 

on the network are still subject to observation and traffic analysis can be performed.   

Link encryption, on the other hand, occurs at the nodes of the network, where each node-

node connection is encrypted.  In link encryption, all data, including the packet headers, 

is encrypted, making traffic analysis much more difficult.  

b. Intrusion Detection 

This covers the ability to detect malicious behavior within the network and 

workstations.  Refer to Chapter II, section E.2.d for details. 

c. Identification and Authentication (I&A) 

Identification and authentication is the process of authenticating a user or 

object.  The authentication process is normally accomplished with something the 

user/object ‘is’, ‘knows’, or ‘possesses’.  An example of something a user/object ‘is’ 

would be biometric information, such as fingerprints, or hashing signatures.  An example 

of something a user/object ‘knows’ would be a password.  An example of something a 

user/object ‘possesses’ would be a token of some sort, such as a ‘smartcard’ or badge.    

d. Access Control Methods 

Access control deals with ensuring users are confined to those areas for 

which they have access.  Refer to Chapter II, section E.2.e for details. 

e. Modification Detection 

Modification detection uses Hashing algorithms to develop signatures for 

data, which can then be used to identify modifications.  Message digests and MACs are 

examples of this mechanism. Refer to Chapter II, section E.2.h for details. 
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f.  Availability Assurance 

This area encompasses the methods of protecting the availability of 

resources from issues such as single point of failure vulnerabilities.  Methods include 

replication of resources, so that if one copy becomes unusable, other copies are still 

available; distributing database resources are prime examples.  

Important, sensitive systems must also guard for physical availability. 

Ensuring redundant power supplies are available in the event of primary power loss can 

ensure that the protected system will always be ready for its purpose.   

C. SUMMARY 

 This chapter presented a matrix of twenty-five RTEVE security areas.  

These areas were created by pairing up the 5 information assurance areas with each of the 

five functional areas of an RTEVE as represented by the NPSNET-V framework.  For 

clarity, a second matrix was developed that associates various security scenarios with the 

respective security areas in the matrix.  And, finally, a third matrix was developed to 

associate developed mechanisms with the security areas that they can be used to address. 

  The next chapter will provide the details on the design and implementation of 

the security capability that was developed to address several security areas of NPSNET-

V.         
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IV. NPSNET-V SECURITY MANAGEMENT SYSTEM (NSMS) 

This chapter contains the design and implementation details of the basis of a 

security management system for NPSNET-V.  Our design and implementation is not 

complete, but it was sufficient for prototyping three NSMS security-enabling filters.   

A. REQUIREMENTS OF AN RTEVE SECURITY MANAGEMENT SYSTEM 

Ideally, a security management system will provide complete coverage of the 

twenty-five areas of RTEVE security as identified in chapter III.  Its predominant 

characteristics should include the following:   

• Must be distributed to prevent single-point-of-failure weakness and also 

for the ability to scale limitlessly.  It should be comprised of a 

combination of host-based, application-based, and middleware, 

networked-based security functionality. 

• Must maintain a robust and efficient key distribution system for all 

participants.  This system must be able to perform and manage routine key 

distribution to all participants, to include when a new communication 

channel is opened that needs to use a key, as well as timely coordinated 

routine key changes.  It must also be able to handle emergency key 

distribution for when a compromise is detected.   

• Ability to identify malicious behavior and provide a response to it.  It must 

possess a robust intrusion detection and response capability; preferably an 

anomaly-based detection system for identification of unknown and novel 

attacks and intrusions.  The response capability must be able to isolate the 

intruder from the system, permanently, or even allow for the possibility of 

decoy mechanisms that can be used to fool intruders while information 

about them is being gathered for potential use [Michael02]. 

• Must allow for I&A, integrity checks, and a non-repudiation capability of 

every possible entity or object that can access resources, resources that can 

be accessed, or objects that are passed.  This includes users, configuration 

files, applications, modules, and data packets. 
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• Should allow for the simultaneous presence of participants with differing 

security levels and compartment authorizations through the use of access 

control mechanisms. 

Some of these capabilities may be sacrificed if there is no need for them in a 

specific application. As with any software project, features are driven by requirements. 

B. SCOPE OF NSMS 

This section will cover the scope of the NSMS including the assumptions made 

and the capabilities that were targeted.  But, first will be a quick overview of the RTEVE 

security areas that are addressed to some extent by this design.  

1. RTEVE Security Areas Addressed 
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Configuration files CFI CFAV CFC CFN CFAT
Components CMI CMAV CMC CMN CMAT
Database DBI DBAV DBC DBN DBAT
Communications CI CAV CC CN CAT
Temporal TI TAV TC TN TAT  

Table 6.   RTEVE Security Areas Addressed by NSMS 
 

 This implementation of the NSMS addresses, to some degree, each of the 

identified areas in Table 6.  Note that this implementation focuses on ESPDU 

transmissions, which form only one of several communications between applications and 

servers.  CMAT is addressed through the use of certificates and a PKI to authenticate one 

type of component, the StandardSecurityManager, while leaving unaddressed other types 

of components. CI is addressed through the use of a message digest provided with each 

packet for integrity verification.  CC is addressed through encrypting data packets.  CAT 

is addressed through the indirect fact that only authenticated applications possess correct 

keys for encryptions, and if an ESPDU was encrypted with the correct key, then the 

application that sent it was authenticated, and therefore the ESPDU is authentic.     
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2. Assumptions  

The main assumptions for the areas covered by the NSMS are as follows: 

• An adequate computer IA policy is in place, including I&A and access 

control mechanisms for and within computer and network resources. 

• Authorized users of a workstation are also authorized users of the 

NPSNET-V framework and any worlds created with it. 

• Certificates used for SSL authentication are unable to be maliciously 

acquired.    

• Existence of a synchronized, uncompromised time space.   

3. Capabilities 

The NSMS addresses the four areas identified in Table 6 through a number of 

mechanisms performed through two separate, yet communicating software entities: A 

security-focused server and a security-based component system embedded within 

NPSNET-V applications.  The component-based system is further broken down into two 

types of objects: a StandardSecurityManager object and Filter Objects, of which there are 

three. The mechanisms in these objects focus on packet communications of the NPSNET-

V framework.   

The server’s capabilities are: 

• StandardSecurityManager component authentication through the use of 

certificates, and managing SSL connections. 

• Generation of symmetric keys for use in packet encryption functions. 

• Ability to generate keys using three different key generation algorithms: 

Data Encryption Standard (DES), Multiple DES (DESede), and Blowfish. 

[Stallings98] and [Oaks01].  Also, the use of varying key lengths (56 – 

448 bits) when using the Blowfish algorithm.   
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• Management of all applications and associated registered encryption-

capable filters and their keys that successfully authenticate and connect to 

the server. 

• Capability of setting an ‘Active period’ in which the key is to be used, 

which will allow for coordinated key changes based on time.  

  The StandardSecurityManager capabilities include: 

• Management of filter Objects 

• Management of symmetric keys that are received from the security server.  

To include proper routing of a key to the intended encryption mechanism, 

the proper management of keys provided for future use, and the effective 

change of keys when a new key’s active period begins. 

The various filters’ capabilities include the following: 

• Symmetric key management, and enciphering and deciphering operations 

on packets. 

• Management of sequencing numbers within outbound and inbound data 

packets.  

• Management of data integrity verification operations on data packets 

through the use of message digests. 

C. DESIGN OVERVIEW 

1. Technology Used 

As discussed in Chapter II, section F, the technology used in the research reported 

here utilizes the Java API and the Java Security API.  The majority of the security 

functionality was created using the two extensions to the Java Security API: the JSSE for 

SSL capabilities, and the JCE for cryptographic capabilities.  And finally, XML was used 

in the process of developing several configuration files for use in the testing and 

experimentation of the NSMS.     

2. Patterns Used 

“Software patterns are reusable solutions to recurring problems that occur during 

software development.” [Grand98]  NPSNET-V makes use of various well-known 
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programming patterns.  The following three patterns were widely used within the design 

of the NSMS.  Refer to [Grand98] for greater details. 

a. Filter 

“The filter pattern allows objects that perform different transformations 

and computations on streams of data and that have compatible interfaces to dynamically 

connect in order to perform arbitrary operations on streams of data.” [Grand98]   This 

pattern allows a programmer to develop a number of different objects that manipulate a 

stream of data in different ways.  The programmer can then connect these filter objects, 

varying the sequence that they are connected, in order to produce the desired sequence of 

manipulations on the initial data.   

This pattern was used in developing the filters that perform operations on 

the ESPDUs.   Further detail will be provided later in this chapter. 

b. Interface 

The idea behind interfaces is to “…Keep a class that uses data and 

services provided by instances of other classes independent of those classes by having it 

access those instances through an interface.” [Grand98]  This pattern allows for a plug-

and-play type of architecture within an application.  For example, a certain application 

relies on a specific service to be provided, and that service can be provided by different 

service providers.  All that the application interface needs to specify is a set of functions 

that any ServiceProvider must implement in order to provide the desired service.  Any 

ServiceProvider that is to be used with the application must implement the functions 

required by the interface in order for the applications to be able to use its services.  

Interfaces are used widely throughout NPSNET-V.  They are the primary 

means used by most components to couple with each other.  An interface permits an 

object to communicate with another object, without knowing how the other object 

provides the desired service or the implementation class.  As long as the requesting object 

passes the arguments expected by the interface of the other object, the request can be 

acted on by the service.  

c. Listener  

More commonly known as the ‘Observer’, this pattern lays the foundation 

for efficient notification of events occurring in one object to be transmitted to interested 
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objects that register themselves with that first object.  In the NSMS this pattern is also 

widely used in communications between the objects contained in the NPSNET-V 

framework.     

3. Three Main Components 

The NSMS is comprised of three major components:  A SecureServer system, a 

SecurityManager type object and filter objects.  The relationship of these objects is 

depicted in Figure 3 below.  The SecurityManager is an interface that supplies required 

methods for objects built on that interface.  For this work, the StandardSecurityManager 

object, that implements the SecurityManager interface.  All extended NPSNET classes 

and implemented interfaces that are referenced in this section are described in detail in 

section C.4 of this chapter.  
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Figure 3.   NSMS Main Component Objects and Their Capabilities 

 

a. SecureServer 

The SecureServer is an object that extends Module, allowing it to be a 

module within an NPSNET-V application.  It also implements two Interfaces: Runnable 
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and Startable.  Runnable is used to spawn off the server’s listening process as a separate 

thread, and Startable is used by the NPSNET framework to start and stop the thread.     

Several Objects were designed for use with the SecureServer in providing 

its functionality.  It Contains a KeyMaker object, which is used for the production of 

SecretKeyPacks.  It also contains any number of SecureServerConnection objects, each 

of which represents a communications link to an individual StandardSecurityManager 

object.  Descriptions of these objects can be found in section C.4 of this chapter. 

The server’s functionality can be broken down into three areas; these are:  

management of connected StandardSecurityManagers, management of symmetric key 

generation, and distribution to registered SecureFilters.   

b. StandardSecurityManager 

The StandardSecurityManager is an object that extends Module, allowing 

it to be a module within an NPSNET-V application, and implements the 

SecurityManager interface.  This interface allows any object that implements the 

SecurityManagerSubscriber to create a communication link with the implementing 

object.  This allows for the connectivity with the filters described in the next section.   

The functionality of this object can be broken down into three areas:  

communications with the SecureServer, management of registered filters, and 

management of the distribution of received SecretKeyPacks destined for SecureFilters.     

c. Filters 

Filter objects allow for the manipulation of data streams.  These filters 

follow the filter pattern as described in section C.2 of this chapter.  Each of the filters 

extends ModuleContainer, and implements the Channel, ReceivedPacketListener, 

PropertyBearerListener, and SecurityManagerSubscriber interfaces.    

Filters perform operations on NPSNET-V DataPacket objects that pass 

through them.  Each filter removes a byte array, representing the data, from the packet.  

The appropriate manipulation is performed on the byte array, and then a new DataPacket 

is generated with the new manipulated byte array, and sent along the communication 

stream.   
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The NSMS has three filter objects, each with unique functionality in 

manipulating the data contained within the DataPackets.  These filters are: the 

SequenceFilter, the IntegrityFilter, and the SecureFilter.  Section E of this chapter 

provides an in-depth overview of these objects.   

4. Miscellaneous Components 

The main components identified in the previous section require the use of several 

other objects.  Some of these objects are basic to the NPSNET-V architecture, and allow 

the NSMS to function within it.  Others were created to provide and assist with the 

functionality of the system.  These are described in the below sections. 

a. NPSNET-V Classes 

Three NPSNET defined classes are used within the NSMS:  Module, 

ModuleContainer, and DataPacket.  Module is an abstract class that represents the base 

class of every NPSNET-V module.  ModuleContainer is a class that allows for the 

containment of other Modules and ModuleContainers.  An easy way to visualize this is to 

think of Module as only being able to be leaf nodes of a tree, and ModuleContainers as 

having the ability to be any kind of node in the tree. 

The DataPacket object contains the entity state data to be transmitted 

across the network.  It holds two primary data elements: an array of bytes representing 

the data, and an integer holding the length of the array.  

b. Interfaces 

Since interfaces are the primary means of communications between 

components within NPSNET-V, they play an important role in the NSMS.  Two 

interfaces were designed to support the communication between the 

StandardSecurityManager and the filters.   

SecurityManager:  Implemented by the StandardSecurityManager, this 

interface was designed as a means for the filters to establish a connection with the 

StandardSecurityManager.  Table 7 provides a listing of the methods required by 

this interface. 
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Returns Method Name (parameters) Description 
void addSecureSubscriber 

(SecurityManagerSubscriber sms) 
Registers a filter with the SecurityManager 

void removeSecureSubscriber     
(SecurityManagerSubscriber sms) 

Unregisters a filter with the SecurityManager 

Table 7.   SecurityManager Interface Methods 

 

SecurityManagerSubscriber: Implemented by the filters, this interface was 

designed as a means for the StandardSecurityManager to communicate with the 

filters.  Table 8 provides a listing of the methods required by this interface. 

 

Returns Method Name (parameters) Description 
void beginPacketTransmission() Signals filter to transmit packets 
void endPacketTRansmission() Signals filter to stop transmitting packets 
void beginPacketReception() Signals filter to receive packets 
void endPacketReception() Signals filter to stop receiving packets 
void addKeyPack(SecretKeyPack skp) Provides filter with a new SecretKeyPack 
void setApplicationID(long id) Provides filter with the host applications ID 
String getID Returns the filter’s ID 
SecretKeyPack getCurrentKeyPack() Returns the current SecretKeyPack in use, if any 
Vector getAllKeyPacks() Returns all SecretKeyPacks that are waiting to 

begin their active period 
int getFilterType Returns the filter’s type  

(i.e. Secure, Integrity, Sequence) 
Table 8.   SecurityManagerSubscriber Interface Methods 

 

These two interfaces provide the ability to create different types of 

SecurityManager and SecurityManagerSubscriber objects; they can be easily integrated 

as long as they contain the methods identified in the interfaces.   This provides the ability 

to have several different types of SecurityManager type objects from which to choose 

depending on the security functionality that is desired.  

The two interfaces that were developed as part of the NSMS were 

discussed above, but there are many other interfaces specific to NPSNET-V that were 

required to be implemented by NSMS objects.  A brief description of each is presented:   

Channel:  This interface is used to identify objects used as entity state 

packet handlers and manipulators.  It requires three methods be implemented:  

sendPacket, addReceivedPacketListener, removeReceivedPacketListener; the first 
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one is used for transmitting packets outbound; the last two are used for connecting 

the implementing object to connect to the next higher object in the application.   

PropertyBearerListener:  This interface is used for establishing channel-

to-channel outbound communications.  That is entity state packets from an 

application’s entities are communicated down and out of the application through 

communication links established through this interface. It requires two methods 

be implemented:  propertybearerRegistered and propertyBearerDeregistered.  

These are used to register and deregister objects that are interested in changes in 

the object with which they are registered.   

ReceivedPacketListener: This interface is used for establishing channel-to-

channel inbound communication.  That is received packets from the network are 

communicated up the application through communication links established 

through this interface.  It requires one method be implemented: packetReceived.  

This allows implementing objects to transmit received packets up the application 

to.  

Startable:  This interface is used for module control.  It requires three 

methods be implemented:  start, stop, isRunning; the first two are self describing, 

the third returns a Boolean indicating if the module is running.   

A number of Java API interfaces were used as well.  These include: 

Runnable and Serializable.  Refer to [Flanagan99] for descriptions of these 

interfaces. 

c. SecretKeyPack  

The SecretKeyPack is a data-holding object that was created in order to 

facilitate the management and distribution of symmetric keys within the NSMS.  It 

contains all the information needed by a SecureFilter for the proper operation of 

cryptographic operations.  Table 9 identifies the contained data objects and their 

descriptions. 
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Data Item Type Description 
filterID String The SecureFilter that this key is intended for 
keyID array of  four bytes The SecretKeyPack’s identifier in byte form 
keyIDInt integer The SecretKeyPack’s identifier integer form 
key Key The symmetric key object 
initializationVector Array of eight bytes The initialization vector required for chaining 
mode String The chaining mode to be used with the key 
paddingScheme String The padding scheme to be used with the key 
beginTime long The start time of the key’s active period 
endTime long  The end time of the key’s active period 

Table 9.   SecretKeyPack Data Items 
 
 

d. SecureServerConnection  

A SecureServerConnection object represent an SSL connection between 

the SecureServer and an individual StandardSecurityMananger.  It is created by the 

SecureServer whenever a StandardSecurityManager successfully connects, receiving a 

handle to the SSL socket that was generated, an identifying integer value unique to that 

connection, and a handle back to the SecureServer to ensure two-way communications.   

Table 10 identifies the public methods of the SecureServerConnection object. 

 

Returns Method Name (parameters) Description 
Void Run() Threaded method that listens for communications 

from the StandardSecurityManager 
Vector getFilterVector Returns a Vector containing the Filters associated 

with this connection 
Void sendKeyPack 

(SecretKeyPack keyPack) 
Transmits the given SecretKeyPack to the 
StandardSecurityMananger associated with this 
connection. 

Void closeConnection() Closes the connection’s socket 
Table 10.   Methods of the SecureServerConnection object 

 
e. KeyMaker  

The KeyMaker object is instantiated by the SecureServer, and is used for 

symmetric key generation.  It contains a KeyGenerator object that produces symmetric 

keys based on the algorithm that it is initialized with; currently three algorithms can be 

used: DES, DESede, and Blowfish.   

The KeyMaker can be instantiated in three way.  The default setting will 

initialize the KeyGenerator with the DES algorithm and identify the chaining mode and 
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PKCS5Padding (see [Oaks 01] and [Stallings99] for information on chaining and padding) 

as the relevant parameters to set within the SecretKeyPack for use by the ciphers engines 

in the SecureFilters.  The second way is by passing the key algorithm to the constructor; 

this will create a KeyGenerator with the passed algorithm, the remaining default settings 

will be applied to the SecretKeyPack.  The third way is by passing the desired key 

algorithm, chaining mode, and padding scheme to the KeyMaker, overriding all the 

defaults.  This functionality is provided for future use, currently only one chaining 

scheme is operable, as well as one padding scheme; these are currently set as the default 

as identified earlier. 

A feature implemented in the KeyMaker is the ability to generate key with 

random key algorithm.  When a flag is set by a call to the randomAlgorthmOn method, 

every successive key will be generated with a random algorithm (DES, DESede, 

Blowfish).  This ability can be shut off by a call to the randomAlgorithmOff method.  

This capability is primarily of use only for testing purposes. 

The public methods for the KeyMaker object are identified in Table 11.  

These methods provide for the required functionality of producing SecretKeyPacks for 

use with the SecureFilters.  

 

Returns Method Name (parameters) Description 
void changeKeyAlgorithm(String alg) Initializes KeyGenerator with the new 

algorithm 
void changeCipherMode(String mod) Changes the desired chaining mode to use 

with the key 
void changePaddingScheme(String mod) Changes the desired padding scheme to use 

with the key 
String getKeyAlgorithm() Returns the KeyGenerator’s current 

algorithm 
String getCipherMode() Returns the current desired chaining mode 
String getPaddingScheme() Returns the current desired padding scheme 
SecretKeyPack generateKeyPack 

(int keyID, long bTime, long eTime ) 
Returns a new SecretKeyPack with the 
passed KeyID, beginTime and endTime. 

Void randomAlgorithmON() Sets the random key algorithm flag to true 
Void randomAlgorithmOff() Sets the random key algorithm flag to false 

Table 11.   Methods of the KeyMaker Object 
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f. KeyStores & Certificates 

A KeyStore is used to hold asymmetric private and public keys, and the 

associated certificate.  A TrustStore contains trusted certificates that are used to validate 

the authenticity of presented certificates.   In order to allow for the proper functioning of 

SSL sockets, both the SecureServer and the StandardSecurityManager are required to 

have associated KeyStores and TrustStores.  [Oaks01] delineates the process by which to 

create a KeyStore and generate a private/public key Pair.  [Oaks01] delineates the process 

of generating a certificate corresponding to a key pair, and importing the certificate into 

an appropriate TrustStore.  

In order for an SSL socket to function, both the client and the server 

needed to have an SSLContext instantiated, that were initialized with the locations of the 

relevant KeyStores and TrustStores that the connections would use.  The KeyStores were 

named: .serverKeyStore and .clientKeyStore.  The TrustStores were named 

.serverTrustStore and .clientTrustStore.  These stores were placed in a folder called 

TestStores, and placed in the root directory (c:\).  Table 12 displays the described 

directory structure and relationships.  

 

Object KeyStore TrustStore 
SecureServer C:\TestStores\.serverKeyStore C:\TestStores\.serverTrustStore 
StandardSecurityManager C:\TestStores\.clientKeyStore C:\TestStores\.clientTrustStore 

Table 12.   KeyStore and TrustStore Locations 
 
 

D. COMMUNICATIONS 

The three main objects of the NSMS required various methods of 

communications.  This section describes the different communication links used. 

1. SecureServer – StandardSecurityManager  

Communication between the StandardSecurityManager and the SecureServer was 

performed through SSL connections.  Standard SSL protocol has only the server 

authenticating itself to the client.  However, in order to provide authentication of the 

StandardSecurityManager component to the SecureServer, the server’s SSLServerSocket 

was configured to ensure that the client authenticates itself to the server.   
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In order for the StandardSecurityManager to contact the SecureServer, it must 

hold the valid IP address for the server.  This parameter is hard coded into the 

getServerConnection method of the StandardSecurityManager with the following 

statement: ‘addr = InetAddress.getByName(“131.120.7.142”);’, where ‘addr’ is an 

InetAddress object.  The server is also hardwired to port 9096; this is identified in the 

StandardSecurityManager by serverPort = 9096; in the variable declaration section. 

  

SecureServer
Standard
Security
Manager

ObjectStream

DataStream

Two-way SSL connectionSecureServer
Standard
Security
Manager

ObjectStream

DataStream

Two-way SSL connection

 
Figure 4.    SecureServer / StaandardSecurityManager connection 
 

Once a successful SSL handshake is completed, the server creates a 

SecureServerConnection object that contains the SSL connection with the 

StandardSecurityManager.  All further communications occur through this object. 

With a SecureServerConnection established, the server’s only communication to 

the SecurityManger is the transmission of SecretKeyPack objects.  This lent itself to the 

use of Java’s Serialization interface, which converts objects into a series of bytes that can 

then be reconstituted into an object. 

Transmissions from the SecurityManager to the SecureServer encompassed 

passing an application’s ID to the server; and then, whenever a SecureFilter was created, 

registering that filter with the server.  Once a filter is registered, the server transmits the 

current SecretKeyPack that was assigned for that filter’s ID; if that ID had not been 

registered yet, a new SecretKeyPack would be generated and sent.        
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2. StandardSecurityManager – Filters 

The main communications between the SecurityManager and filters are 

performed through the use of SecurityManager and SecurityManagerSubscriber 

interfaces as described earlier.  Figure 5 graphically depicts this relationship. 

Standard
Security
Manger

Filter

SecurityManagerSubscriber Interface

SecurityManager Interface

Standard
Security
Manger

Filter

SecurityManagerSubscriber Interface

SecurityManager Interface

 
Figure 5.   Communication Interfaces Between StandardSecurityManager and the filters 

 

3. Filter – Filter 

The main communications between the individual filters, and between the filters 

and the channel and NetworkController objects are performed through the use of 

PropertyBearerListener and ReceivedPacketListener interfaces as described earlier.  

Figure 6 shows this relationship. 

Filter Filter
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ReceivedpacketListener Interfaces

Channel network
Network

Controller
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Filter Filter

PropertyBearerListener Interfaces

ReceivedpacketListener Interfaces

Channel network
Network

Controller

Outgoing packets

Incoming packets

 
Figure 6.   Communication Interfaces between filters 
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Figure 6 shows how an outbound packet travels from the NetworkController 

through the connections established through the PropertyBearerListener interfaces out to 

the network.  Incoming packets likewise are received from the network by a channel 

object; the packets then travel up the application through the connections established by 

the ReceivedPacketListener interface.  Each filter in this sequence performs their specific 

operations on the data passing through it, and then passes the new data to the next filter. 

E. FILTERS 

These filters perform unique manipulations on the data contained in a DataPacket.  

The data is in the form of byte arrays of arbitrary length.  Each filter removes the data 

array, manipulates it as necessary, and then generates a new DataPacket with the new 

data array, and passes it off to the next module, be it a NetworkController, filter, or 

channel object. 

1. SequenceFilter 

This filter performs sequencing operations on the DataPackets.  The purpose 

behind this is to avoid replay attacks in which an attacker listening on the network makes 

copies of legal packets and then resends the packets, in the hopes that the packets will be 

accepted as legitimate. Since the packets were originally encrypted with a legitimate key, 

and the message digest code is correct, detecting replayed packets is a non-trivial 

problem. If this technique is not countered, attackers can force certain events to re-occur 

at will. Typically this type of attack is countered by adding unique information to each 

packet so that duplicate packets can be detected and rejected. Appendix D contains the 

code for this filter. 

  When first instantiated, this filter selects a random, four-byte integer as the 

beginning sequence number.  For outbound packets, it appends the application’s eight-

byte ID and a four-byte sequencing number into the beginning of the data array, thus 

creating a new byte array that is twelve bytes larger than the original; Figure 7 depicts 

this operation.  It then creates a new DataPacket with this data array and passes it to the 

next filter or channel.   The sequence number is incremented after each packet.  When the 

sequence number reaches the maximum integer value of 231-1, it rolls the sequence 

number over to begin at the lowest integer value of -231, allowing for continued 

sequencing support. 
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Data

AppID : ID of Application
Seq # : Sequence Number

SequenceFilter AppID Seq # DataData

AppID : ID of Application
Seq # : Sequence Number

SequenceFilter AppID Seq # DataAppID Seq # Data

 
 

Figure 7.   Outbound Data Before and After the SequenceFilter 

 

On incoming DataPackets, this filter performs sequence number verification, 

using the appSequenceTable, a HashTable object, called in which it maintains known 

application IDs and the most recent sequence number observed for that ID.  When it 

receives an inbound packet, it retrieves the data array and removes the application ID and 

the sequence number.  It sends these two items through a checkIDandSequence method 

for verification.   

The checkIDandSequence method first checks to see that the application ID is not 

the same as the host application ID; if it is the same, the method signals for the packet to 

be rejected.   Next, the method checks the appSequenceTable for the presence of that 

particular ID; if the ID is present then the sequence number is checked against the last 

seen sequence number to ensure that it is within twenty increments one of the last packet 

received from that application; this is to take into account the possible packet loss when 

dealing with UDP connections.  If the number is legitimate, then the sequence number is 

replaced in the table and the method signals that the packet is good.   If the application ID 

is not present, then the filter accepts it as a legitimate ID, and adds it and its sequence 

number to the appSequenceTable, then signals to accept the packet.  If the DataPacket is 

accepted, then the filter creates a new DataPacket with the data portion of the data array, 

and passes it to the next filter or network controller. 

2. IntegrityFilter 

This filter performs integrity operations on the DataPackets.  The purpose behind 

this is to ensure that the data transmitted in the data array has not been altered, either 

through inadvertent corruption or malicious attack.  The integrity feature is provided 
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through the use of a MessageDigest object from the Java Security API.  Refer to 

appendix E for this filter’s code.  This filter uses two MessageDigest objects: 

transmitMessageDigester and messageDigestChecker.   

For outbound packets, this filter takes the data array and provides it to the 

transmitMessageDigester.  It then calls the objects digest method, which produces the 

message digest as an array of bytes.  The MessageDigest objects in the filter use the 

Secure Hash Algorithm (SHA), which produces a twenty byte message digest on any 

length of byte array that is provided.   In anticipation of future functionality that may 

produce variable sized message digests, the length of the digest is then determined.  The 

length of the digest, as a one-byte integer, and the digest are then appended to the 

beginning of the data array (see Figure 8) and a new DataPacket is created with the new 

data array.  The packet is then delivered to the next outbound filter or channel.  As this 

filter currently functions, it increases the size of any original array by twenty-one bytes. 

 

Data

Len : Length of digest
MD : Message Digest

IntegrityFilter MD DataLenData

Len : Length of digest
MD : Message Digest

IntegrityFilter MD DataLen

 
Figure 8.   Outbound Data Before and After the IntegrityFilter 

 

On incoming DataPackets, this filter performs message digest verification.  When 

it receives an inbound packet, it retrieves the data array and removes the one-byte length, 

and subsequently the message digest.  It then provides the message digest and the 

remaining data array to the verifyDigest method for verification processing.      

The verifyDigest method uses the messageDigestChecker to produce another 

message digest on the provided data array.  This new digest is compared to the provided 

digest.  If the digests are identical, then the method signals that the data has not been 

modified and is okay to continue.  If the data is verified to be unmodified, then the filter 
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creates a new DataPacket with the data portion of the data array, and sends it up the 

application.  

3. SecureFilter 

This filter performs cryptographic operations on the DataPackets.  This addresses 

the communication confidentiality of the DataPackets.  Cryptographic operations are 

conducted using the Cipher object from the JCE extension of the Java Security API.  The 

filter contains two of these Cipher objects: encipherer and decipherer.  Details on the 

initialization of these ciphers are discussed in section G.3.b.  Refer to appendix F for this 

filter’s implementation.     

For outbound packets, this filter takes the data array and provides it to the 

encipherData method.  Within this method the data array is passed to the encipherer and 

the data is encrypted by providing its doFinal method.  A new byte array is then formed 

with the current key’s four-byte ID and the encrypted data array, which will have 

increased in size to be a multiple of eight bytes; this is due to the requirement for 

ciphering in sixty-four bit blocks by the cipher in chaining mode.  The new data array is 

then returned.  A new DataPacket is formed with the array, and then sent to the next 

outbound filter or channel, as shown in Figure 9.  The current implementation of this 

filter increases the size of the original array by four to eleven bytes. 

 

Data

KeyID : ID of encryption Key

SecureFilter KeyID Encrypted DataData

KeyID : ID of encryption Key

SecureFilter KeyID Encrypted Data

 
Figure 9.   Outbound Data Before and After the SecureFilter 

 

The filter performs decryption operations on incoming DataPackets.  When the 

filter receives an inbound packet, it retrieves the data array and provides it to the 

decipherData method.  Here, the key ID is separated from the encrypted data array.  The 

key ID is then checked to ensure it is the same as the filter’s current active key; if not, an 

exception is raised.  Otherwise, the encrypted data is passed to the decipherer, and its 
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doFinal method is called, producing the deciphered byte array.  This new data array is 

then returned.  Next, the filter then creates a new DataPacket with the data array, and 

sends it up the application.  

This filter is the most complicated of all the filters designed in the NSMS so far.  

There is an infrastructure used for managing the SecretKeyPacks within the SecureFilter.  

This infrastructure is described in section G.3.  

F. MODULE MANAGEMENT 

In theory, an infinite number of participants could exist simultaneously in an 

RTEVE.  Here we discuss how the SecurityManagers and the filters would be used to 

support large numbers of participants.   

1. Management of SecurityManagers  

The SecureServer must be able to manage any number of 

StandardSecurityManager connections.  This is accomplished through the use of a unique 

identifier for every StandardSecurityManager, and through the SecureServer’s use of an 

efficient data structure to track the StandardSecurityManager connections. 

a. Application ID 

When a StandardSecurityManager is first instantiated, it determines a 

unique eight-byte identifier by concatenating a series of four random bytes to the four–

byte IP address; it then determines the long integer that this eight-byte sequence 

represents.  This long is then identified as the applicationLong.  This is designed to avoid 

collision of identifiers when several applications are sharing IP addresses.  There does 

exist the possibility of collision, but it is deemed a very remote chance when dealing with 

four random bytes.  

b. SecureServer’s Role 

The SecureServer manages the StandardSecurityManagers, through the 

use of a Vector that contains each SecureServerConnection object, one 

SecureServerConnection per StandardSecurityManager.  If a socket connection is 

dropped, the SecureServer handles the exception by removing the 

SecureServerConnection object and deregistering any filters that were attributed to that 

SecureServerConnection.   
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2. Management of Filters 

The management of the filters is crucial to the security of the application, 

particularly with the SecureFilter.   

a. Filter ID and Type 

Since it is possible to have hundreds of filters within the same application, 

every filter must be distinguishable: distinguishable from other types of filters, and 

distinguishable from others of the same type.  In order to identify different types of 

filters, the SecurityManagerSubscriber interface contains three constants that are used for 

filter identification: SECURE_FILTER_TYPE, SEQUENCE_FILTER_TYPE, and 

INTEGRITY_FILTER_TYPE.  This method is used in order to provide a common base 

for all modules to be able to identify types. 

In order to distinguish a filter from others of the same type, a unique string 

must be passed into the filter during instantiation.  This is performed by adding a line to 

the XML configuration file to call the setID method of the filter, and providing an 

identifying name.      

b. StandardSecurityManager’s Role 

The StandardSecurityManager maintains three Vector objects, one for each type 

of filter.  When a filter registers itself with StandardSecurityManager, the 

SecurityManager retrieves the filter’s type and ID, adding the filter to the appropriate 

vector.  If the filter is a SecureFilter object, the StandardSecurityManager then registers 

the filter with the SecureServer.   

When the StandardSecurityManager receives a SecretKeyPack from the 

SecureServer for a filter it contains, it immediately hands the SecretKeyPack to the 

SecureFilter for processing.    

c. SecureServer’s Role 

The SecureServer maintains two HashTables that it uses in managing 

SecureFilters.  The filterConnectionTable maintains a list of all active SecureFilters that 

have been registered with the server, along with a vector that contains every 

SecureServerConnection object that holds that particular filter.  This is used to efficiently 

identify what SecureServerConnections need to receive a SecretKeyPack that is intended 

for use by a particular filter.  
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The FilterKeyTable is used to efficiently map an active SecureFilter with 

its currently active SecretKeyPack.  This way, when a SecureServerConnection registers 

a filter that already exists, it will immediately receive the SecretKeyPack that is in use by 

the other SecureServerConnections with the same filter, and the filter can immediately 

begin to communicate with its clones in other applications. 

G. KEY MANAGEMENT 

Key management is fairly straightforward within the NSMS.  It begins with the 

generation of keys by the SecureServer, and ends with the SecureFilter managing the key 

changes.  The central object within this area is the SecretKeyPack, presented in section  

1. SecureServer  

The SecureServer is at the heart of the key management infrastructure of the 

NSMS.  It handles generation, distribution and tracking of all keys for all of the 

SecureFilters. 

a. Key Generation 

The SecureServer uses the KeyMaker to generate needed SecretKeyPacks.  

For this implementation of the NSMS, a graphical user’s interface, the SecureServerGUI, 

was created testing the key-generation functions of the system.  It contains buttons that 

allow for generation of a SecretKeyPack destined for all SecureFilters.  In addition it 

contains a button that initiates a continuous generation of SecretKeyPacks at an interval 

identified in the server.  It contains a button that switches the random key algorithm 

capability on and off.   Also, whenever an individual SecureFilter is registered, a button 

is added to the GUI that allows for a SecretKeyPack to be generated and sent just to that 

filter.  

Upon request for a new SecretKeyPack, the KeyMaker generates a new 

key by using a KeyGenerator object that is set to the currently selected algorithm (DES, 

DESede, or Blowfish).  It then generates a random array of eight bytes for use as the 

initialization vector that will be used by the ciphers in the SecureFilters for the purposes 

of chaining.  The KeyMaker then instantiates a SecretKeyPack that contains the key, the 

initialization vector, and all other information necessary for the proper handling of the 

key and functioning of the ciphers; refer to section C.4.c for details on the SecretKeyPack 

data. 
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b. Key Distribution 

The SecureServer handles the distribution of keys through the use of the 

filterConnectionTable.  When a SecretKeyPack is generated for a particular filter, it runs 

through the SecureServerConnections contained in the vector associated with the filter 

and sends the SecretkeyPack to each one.   

c. Key Tracking 

Key tracking is handled through the use of the filterKeyTable.  This table 

contains the active SecureFilter IDs and their corresponding active SecretKeyPacks.  

2. StandardSecurityManager 

The StandardSecurityManager perform minimal actions with the SecretKeyPacks.  

When one arrives from the SecureServer, it looks at the ID of the filter it is intended for, 

and passes it to the filter.  No tracking is performed by the StandardSecurityManager.  

Since the filter will maintain the SecretKeyPacks, there is no need for the 

StandardSecurityManager object to do so as well.       

3. Secure Filter 

The SecureFilter performs the detailed key management operations.  It handles 

immediate key changes, and schedules and executes future key changes based on the 

indicated active period of the received KeyPacks. 

a. Key Tracking 

The SecretKeyPack that is currently active is identified as the 

currentKeyPack, all cryptographic operations on outbound and inbound DataPackets are 

performed by referencing the data in this keypack.  All SecretKeyPacks that are received 

for future activation are placed in the nextKeyPacks Vector in order of its start time. 

b. Key Changing 

The SecureFilter performs a key change by shutting down the filter’s 

transmission and reception capabilities, instantiating two new Cipher objects with the key 

parameter information contained in the SecretKeyPack.  These two ciphers, the 

encipherer and decipherer, are then initialized with the initialization vector and the new 

key provided by the SecretKeyPack.  The filter’s transmission and reception flows are 

then restarted. 
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If a key pack is received with a start time that is in the past, the 

SecureFilter performs an immediate key-change operation in which all awaiting key 

packs are removed from the Vector, and a key change is performed.  When the active 

period has not yet begun, a TimerTask object, that includes the changeKeys method of the 

filter, is created.  This task is then handed to a Timer object, along with the delay before 

the active period begins.  The Timer ensures that the TimerTask is begun at the 

appropriate time.  When the TimerTask is tripped, the appropriate key change is 

performed. 

H. NSMS XML CONFIGURATION FILES 

An XML configuration file for a sample NSMS containing world is presented in 

Appendix C.  The application represented in this configuration file contains a 

StandardSecurityManager and four filters.  One Secure filter, that is assigned an ID of 

‘sec96’ and is placed by itself before a multicast channel that transmit/receives on 

address 225.93.23.96.  The remaining three filters are placed in series before a multicast 

channel transmitting/receiving on address 225.93.23.92.  The three filters, in outbound 

order are: SequenceFilter ‘seq92’, IntegrityFilter ‘int92’, and SecureFilter ‘sec92’.  This 

indicates that a DataPacket will first be processed by the SequenceFilter, then that packet 

will be processed by the IntegrityFilter, and finally that packet will be processed by the 

SecureFilter before being transmitted over the multicast channel.    The XML files used 

for testing purposes are identified in Table 13, along with the implemented filters and 

their IDs. 



71 

XML File contained filters Filter ID
secure_server.xml n/a n/a
secure_a.xml SecureFilter sec96
secure_b.xml SequenceFilter    seq92

     IntegrityFilter int92
          SecureFilter sec92
SecureFilter sec96

secure_c.xml SequenceFilter    seq92
     IntegrityFilter int92
          SecureFilter sec92
SequenceFilter    seq93

secure_d.xml SequenceFilter    seq92
     IntegrityFilter int92
          SecureFilter sec92
IntegrityFilter int 95

secure_e.xml IntegrityFilter int95
secure_f.xml SequenceFilter    seq93

All xml files are located in: npsnetv\applications\tests
The last two digits of a filterID equate to a Multicast channel  

Table 13.   NSMS test XML Configuration Files 
 
 

I. NSMS WEAKNESSES 

There are several weaknesses that have been identified with the NSMS as it 

currently is implemented.  These are: 

• The centralized server architecture.  This poses a single-point-of-failure 

vulnerability for the system. Also, if the server were to be subverted, then 

the subverting entity would have complete control of the interaction 

capabilities of the system. 

• The keys that are held by the SecureServer and the SecureFilters are 

vulnerable as they reside in memory.  If a malicious entity had access to 

the system, and could determine where the keys resided in memory, the 

malicious entity might try to reconstitute the keys to gain access to the 

data packet transmissions.  

• The KeyStores contain the public/private key pairs and certificates.  If 

copies of these are acquired by a malicious entity, then that entity could 

use the key pairs or certificates for authentication purposes and potentially 

gain access to the worlds. 
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• The SequenceFilter currently will trust any new application ID that it sees, 

without authenticating it.  If a malicious entity were able to inject packets 

without registering with the SecureServer, the SequenceFilter would trust 

them and accept them as a valid user.  Authentication is assumed through 

the use of a SecureFilter combined with an IntegrityFilter(i.e., if the 

incoming packet has an active key, and the packet decrypts correctly, and 

the packet has a valid message digest, then it is presumed to have 

originated from an authenticated application that possesses valid 

encryption keys).  This requires the use of a SecureFilter with the 

IntegrityFilter.  The SequenceFilter should be able to authenticate on its 

own, possibly by verifying the new application ID with the SecureServer.  

• The IntegrityFilter currently uses a MessageDigest, which, if not used in 

conjunction with the SecureFilter, would be vulnerable to attacks.  If the 

IntegrityFilter were to be used alone, then a MAC that requires the use of 

shared keys to generate the digests might be more appropriate to use.  This 

would still maintain the authentication aspect due to the shared secret key 

that was used.  Public key encryption could also be used to encrypt and 

digitally sign the message digest and provide a layer of security for the 

integrity operations, as well as provide non-repudiation characteristics.  

However, this possesses two major drawbacks for state data packet 

transmissions:  It would require a complicated public key distribution 

capability; and, more importantly, the public key encryption algorithms 

would induce too great a delay in packet processing. 

J. KEY DISTRIBUTION LATENCY PROBLEM 

Synchronized key changes amongst all StandardSecurityManagers would be a 

non-issue if packet distribution from the SecureServer were instantaneous.  However, the 

issue of latency is a challenge when dealing with this issue.  Figure 10 depicts the 

latencies that are present in the key distribution problem. 
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Figure 10.   Delay diagram of NSMS architecture 

 
 

One impact on the performance of the system is the time it takes for a key to be 

distributed to all participants.  If there were n participants and the time it takes for a key 

to be transmitted to a participant is t, then the total time required for all participants to 

receive the new key would be (n*t).  Since a disparity in the keys held by the participants 

would occur when the first participant received their key, then the time between the first 

and last participants receiving their keys would be ((n-1)*t).  If the key on the hosts is 

changed immediately upon receipt, this means that during this period of time the entire 

set of hosts will not have a consistent shared key. Thus the messages of some hosts will 

be unintelligible to others. This problem can be minimized by coordinating a time at 

which the switchover will occur. The SecureServer sends out a new key along with a time 

that all hosts will switch to the new key. The hosts (which are assumed to have 

synchronized clock times) all switch to the new key at the same time. The coordinated 

switchover approach works well for routine shared key changes. However, if we suspect 

the key is compromised, or if one host leaves the VE and we wish to minimize the 

amount of data that is transmitted with a compromised key, we may accept a period of 

mutual unintelligibility in order maximize data security. 

The second aspect of this problem is the latency between hosts in the VE.  If the 

longest latency between any two participants were Lmax then it would take Lmax time 
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before one of those participants would see a packet encrypted with the new key from the 

other participant. Assuming that all hosts switch to a new key at the same time, the 

packets already in the network that were encrypted with the old key would still be in 

transit, and therefore arriving over a period of Lmax. 

The two above mentioned aspects must be taken into account by a SecureServer 

when generating a new key, in order to ensure minimal impact due to mismatched keys 

amongst participants.  This theoretical minimum time delay between the transmittal of a 

key to the first host, and the beginning of the key’s active period can be computed to as: 

(n-1)*t + Lmax.  This requires that the SecureServer be aware of the performance within 

the network, in order to accurately identify the network’s latency. 

K. SUMMARY 

In this chapter we gave an overview of desirable characteristics and requirements 

that a comprehensive security management system for an RTEVE should possess.  Our 

NSMS is not an all-encompassing solution.  Rather, it is the beginning of a more 

comprehensive approach for addressing issues of security in RTEVEs. 

Figure 11 depicts an NSMS in a two-application environment in which two 

channels of communication are being used.  One channel is a TCP/IP connection that has 

a SecureFilter encrypting the data that is transmitted.  The second communication 

channel is a UDP multicast channel in which the data packets are sent through a 

SequentialFilter, then an IntegrityFilter, and finally through a SecureFilter (the 

recommended sequence of filtration). 
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Figure 11.   NSMS in a Two Application Environment  

 

The next chapter documents the results from several studies performed on the 

filters that were designed.  The studies were conducted to identify the impact of the filter 

algorithms on process-induced delay in packet transmission.   
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V. PERFORMANCE REVIEW OF NSMS CAPABILITIES 

This chapter presents a beginning analysis of the NSMS filters with respect to the 

amount of delay induced by their algorithms.  This provides insight into the effects of 

these security mechanisms on data-packet-flow performance of a large scale VE.  Since 

reliability is more of a system-level concern, we choose to focus on investigating delay 

and bandwidth. 

A. INTRODUCTION 

There has always been a concern with the impact of security features on the 

performance of a networked VE.  These studies were designed to identify the impact that 

the security-enabling filters introduced in this thesis would have on the QOS concerns 

identified in chapter II.     

B. SYSTEM SET-UP 

Since the studies were focused on the performance of the application’s filters, it 

was necessary to ensure that the application would have its own dedicated host; 

otherwise, performance would be impacted by the presence of the server on the same 

computing platform.  Therefore a dual-platform configuration was devised with the 

SecureServer and an individual NPSNET-V application operating on separate computers.    

1. Server  

The server was hosted on an IBM ThinkPad iSeries 600 MHz Celeron laptop, 

with 192MB RAM and the Windows2000 operating system.  It was connected to the 

local area network through standard 100 mbit/sec Ethernet cabling.   

2. Experiment Applications  

The NPSNET-V applications were hosted on a Dell Dimension 4100 Intel P-III 

1GHz desktop, with 256MB RAM, and the Windows2000 operating system.  This too 

was connected to the local area network through standard Ethernet cabling.   

Base performance characteristics of the filters were of interest.  Each 

experimental VE application was designed with only one entity in order to produce a 

stream of constant-size data packets.  In order to avoid the impact of computation by 

graphical processes, the 3-dimensional viewing components were not included in the test 

applications.  The only processes executing, other than the study application, were the 



78 

primary process threads of Windows2000 running in the background; this ensured that 

the application under study would be the only main draw on processor resources. 

C. GENERAL STUDY DESIGN 

In order to gather time statistics within the filter, Java’s System.currentTimeMillis 

method was used to retrieve the current time in milliseconds as a long value.  Since most 

processing was believed to be on the sub-millisecond level, this would present precision 

errors.  In order to alleviate this concern, a decision was made to encase the functional 

areas of each filter in a for-loop that would loop through the encased algorithm for 10000 

iterations.  The system time was recorded on entering and exiting the loop. The difference 

between the times was then divided by the number of loop iterations, with the resulting 

value being attributed to one cycle of the algorithm.  This for-loop was then executed 

thirty times and averages determined to produce one data point, with each data point 

representing thirty runs of 10000 iterations. Ten data points were then accumulated for 

each parameter set of the individual studies and analysis performed.      

We compared the execution times of the algorithms by the size of the data arrays.  

In order to produce this effect, each study used two different NPSNET-V applications, 

each containing a different entity that produced different sized packets.  The generated 

packets had byte arrays with lengths of 116 and 156 bytes.  These packet sizes are fairly 

typical for many VE network protocols, such as DIS.  Packets with data of length 116 

bytes were produced by the StandardExplosionManager entity, while data packets of 156 

were produced by the teapot entity.  

Due to the number of iterations for each sample, precision of the execution times 

was limited to three decimal points.  One thousandth of a millisecond precision was 

deemed sufficient for this study.  Therefore, where there seems to be no difference in 

execution comparisons, there may in fact be a small difference, albeit minute.    

All studies include results on both the outbound and inbound packet handling 

algorithms.  Separate for-loops were used on each algorithm within the same filter, and 

were performed in alternating order using the same data.  That is, one packet was run 

through the outbound process, and then that resultant packet was processed through the 
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inbound algorithm; the same cycle was repeated thirty times to produce one data point on 

each algorithm.   

D. SECURE FILTER DELAY STUDY 

This study delved into the effects of the enciphering and deciphering capabilities 

of the filter.  Concern has always been expressed that the delay induced by these 

processes would negatively impact QOS, and thus is usually not considered with respect 

to entity data packets. 

1. Study Design 

This study was designed to look at the impact of the actual SecureFilter’s 

enciphering and deciphering algorithms, and that introduced by the actual ciphering and 

deciphering of the data when using the three different keying algorithms of DES, 

DESede, and Blowfish (Blowfish was set to use the maximum key size of 448 bits).  Note 

that the data sizes in the charts of this section indicate the size of the data arrays that are 

being passed into the actual cipher/deciphering portion of the algorithm; in the case of 

156/160, 156 bytes are entering the enciphering Cipher, while 160 bytes are entering the 

deciphering cipher. This is caused by padding in the encryption algorithm that generates 

ciphered data in chunks of eight bytes. One hundred fifty six bytes are padded out to the 

next multiple of eight bytes, 160 bytes.  The deciphering algorithm therefore receives 160 

bytes and produces deciphered data of 156 bytes.   

The first two experiments focused on the execution times of the SecureFilter’s 

algorithms and the actual cipher/decipher calls respectively.  The third experiment 

focused on the impact due to different key sizes when using the Blowfish algorithm; and 

the last experiment focused on the processing impact caused by the SecureFilter’s 

operation during the execution of the encryption operations. 

2. Results  

Analysis of Enciphering/Deciphering Algorithm Execution Time: This 

experiment was designed to provide data on the filter’s ciphering and deciphering 

algorithm for data array sizes of 156 and 116 bytes.  It was performed using the three 

identified keying algorithms.  Results of this experiment are shown in Table 14, and 

indicate that: 
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• Overall execution times of the algorithms increase as you go from 

Blowfish to DES, and then to DESede for both enciphering and 

deciphering. The data indicates that Blowfish is approximately 0.017 

milliseconds faster than DES, and 0.092 milliseconds faster than DESede 

for enciphering, and 0.013/0.089 for deciphering. 

• Deciphering operations are less than 0.01 milliseconds slower than 

enciphering operations. 

• Blowfish, considered the strongest of the three algorithms to break, was 

the fastest of all, even though it was set with the largest key size of all. 

 

SecureFilter Algorithm (milliseconds)
data size: 156/172 bytes data size: 116/132 bytes
Algorthm Encipher Decipher Algorithm Encipher Decipher
DES 0.048 0.053 DES 0.036 0.040
DESede 0.123 0.127 DESede 0.092 0.096
Blowfish 0.031 0.035 Blowfish 0.024 0.026  

Table 14.   Average Execution Times for SecureFilter Encipher/Deciphering                                                                                                                              
Algorithms per Key Algorithm 

 

A comparison of the algorithms based on differing data array sizes is provided in 

Table 15.  This comparison indicates the following: 

• The execution time difference between enciphering and deciphering is 

virtually the same for each key algorithm, with the largest disparity 

residing with the Blowfish algorithm.   

• A data size difference of forty bytes has an impact on the algorithms that 

is measurable only in the hundredth-of-a-millisecond range, a negligible 

difference.      
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SecureFilter Algorithm (milliseconds)
Algorithm Data size Encipher Decipher
DES 156/160 bytes 0.048 0.053

116/120 bytes 0.036 0.040
difference: 0.012 0.013

DESede 156/160 bytes 0.123 0.127
116/120 bytes 0.092 0.096
difference: 0.031 0.031

Blowfish 156/160 bytes 0.031 0.035
116/120 bytes 0.024 0.026
difference: 0.007 0.009  

Table 15.   Comparison of the SecureFilter’s Encipher/Decipher                                            
Algorithm Execution Times in Relation to Data Array Size  

 

Analysis of Cipher’s Encipher/Decipher Execution Times:  This experiment 

was designed to provide data on the Cipher object’s ciphering and deciphering process 

for data array sizes of 156 and 116.  This information, compared to the data from 

experiment one, provided an indication of what delay was introduced by the non-cipher 

portions of the filter algorithms.  Results of this experiment are shown in Table 16, 

indicating the following: 

• Ciphering and deciphering operations using DESede are 200% slower than 

when using DES.   

• Ciphering and deciphering operations using Blowfish are 50% faster than 

when using DES.  

• There is negligible difference (in the thousandths of a millisecond) in 

execution times for ciphering/deciphering with the same algorithm.   
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Cipher Call (milliseconds)
data size: 156/172 bytes data size: 116/132 bytes
Algorthm Encipher Decipher Algorithm Encipher Decipher
DES 0.046 0.050 DES 0.034 0.037
DESede 0.120 0.123 DESede 0.090 0.093
Blowfish 0.028 0.032 Blowfish 0.022 0.023  

Table 16.   Average Execution Times for Cipher Encipher/Decipher Call per Key Algorithm 

 

A comparison of the Cipher enciphering/deciphering calls on differing data array 

sizes is provided in Table 17.  These results indicate that the Blowfish, DES, and DESede 

enciphering execution times are affected by differences in data array sizes.  The affect 

was approximately 0.007, 0.011 and 0.03 milliseconds slower for an array difference of 

forty bytes.   

 

Cipher call comparisons (milliseconds)
Algorithm Data size Encipher Decipher
DES 156/160 bytes 0.046 0.050

116/120 bytes 0.034 0.037
difference: 0.012 0.013

DESede 156/160 bytes 0.120 0.123
116/120 bytes 0.090 0.093
difference: 0.030 0.030

Blowfish 156/160 bytes 0.028 0.032
116/120 bytes 0.022 0.023
difference: 0.006 0.009  

Table 17.   Comparison of the Cipher Object’s Encipher/Decipher Execution                        
Times in Relation to Data Array Size  

 

The difference between the algorithms and the cipher execution times is shown in 

Table 18.  These results indicate that the average execution time of the filter per encipher 

and decipher that is attributable to the non-cipher algorithm is less than 0.003 

milliseconds.  Thus the performance of the filter rests predominantly with the key 

algorithm in use.  
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Difference Between Algorithm and Cipher Call (milliseconds)
data size: 156/172 bytes data size: 116/132 bytes
Algorthm Encipher Decipher Algorithm Encipher Decipher
DES 0.002 0.004 DES 0.002 0.003
DESede 0.003 0.004 DESede 0.002 0.003
Blowfish 0.003 0.003 Blowfish 0.002 0.003
Average: 0.003  

Table 18.   Differences Between Method Call and Cipher call 
 

Analysis of the Blowfish Algorithm Encipher/Decipher Execution Times:  

This experiment was designed to determine the effect of different key sizes on the 

encipher/decipher execution times of the Blowfish key algorithm.  The three key sizes 

used were: 56, 128, and 448 bits.  Results of this experiment are shown in Table 19, and 

indicate that key size appears to have a negligible influence, of less than 0.001 

milliseconds, on enciphering and deciphering times.  There is no reason to use less than 

448-bit encryption since it has no adverse impact.  

Blowfish cipher times (milliseconds) 
KeySize Encipher Decipher
56 bits 0.022 0.023
128 bits 0.022 0.023
448 bits 0.022 0.023  

Table 19.   Average Blowfish Encipher/Decipher Execution                                                         
Times for Varying Key Sizes 

 

Analysis of the CPU usage impact:  This experiment was designed to identify 

the impact of SecureFilter operations on CPU usage.  The SecureFilter was using the 

Blowfish algorithm with a 448-bit key size.  The frequency of data packet production was 

manipulated to produce three different rates: 30, 60, and 120Hz.  The CPU readings were 

taken by using the system performance tab of the Windows2000 Task Manager, and 

observing the minimum, maximum, and the predominant range during a two minute time 

frame.   The results are provided in Table 20, and indicate that the impact of a single 

SecureFilter on CPU usage is negligible at less than four percent at 120Hz.  
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Impact of SecureFilter on CPU usage
packet size: 156 bytes
rate min/max predominant

30 Hz 0/3% 0-2%
60HZ 0/4% 0-3%

120HZ 1/4% 1-3%  
Table 20.   CPU Usage during SecureFilter operation  

 
E. SEQUENCE FILTER DELAY STUDY 

We also explored the effects of the sequencing operations of the filter.  We did 

not expect the delay introduced by this filter to be significant. 

1. Study Design 

As identified in section C of this chapter, the outbound algorithm in the 

sendPacket method and inbound algorithm in the packetReceived method are 

encapsulated in a for-loop.  This experiment was also performed on data array sizes of 

156 and 116 bytes. Note that the data sizes in the charts of this section indicate the size of 

the data arrays that are passed through the transmit and receive algorithms; in the case of 

156/168, 156 bytes are entering the transmit algorithm, while 168 bytes (four-byte 

sequence number plus eight-byte application ID plus 156 byte data array) enter the 

receive algorithm.   

2. Results  

Results of this experiment are shown in Table 21 below.  The results indicate the 

following: 

• Overall execution time of the transmit algorithm is 0.002 milliseconds, 

and is not dependent on the size of the data that is provided. 

• Overall execution time of the receive algorithm is 0.004 milliseconds.  

The apparent difference in times due to data size is curious, yet not 

significant.  There is nothing in the code that can account for this. 

• The reception times are twice that of the transmittal times; this is due to 

accessing of the hash tables to verify the application ID and sequence 

number of the incoming packets. 
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• An average of 0.006 milliseconds is required for sequencing operations to 

be performed on a data packet from one host to another. 

• The impact of this filter on delay is negligible. 

SequenceFilter-induced delay (milliseconds)
Data size (bytes) Transmit Receive Total Time
116/128 0.002 0.004 0.006
156/168 0.002 0.004 0.006
Difference 0.000 0.001 0.001  

Table 21.   Average Execution Times for SequenceFilter’s transmit and receive Algorithms 

 

F. INTEGRITY FILTER DELAY STUDY 

We also investigated the effects of the sequencing operations of the filter.  We did 

not expect to observe a significant delay. 

1. Study Design 

The outbound algorithm in the sendPacket method and inbound algorithm in the 

packetReceived method are encapsulated in a for-loop.  This experiment was also 

performed on data array sizes of 156 and 116 bytes. Note that the data sizes in the charts 

of this section indicate the size of the data arrays that are passed through the transmit and 

receive algorithms; in the case of 156/180, 156 bytes enter the transmittal algorithm, 

while 180 bytes (four-byte length plus twenty byte message digest plus 156 byte data 

array) enter the receive algorithm.   

2. Results 

Results of this experiment are shown in Table 22.  The results of the experiment 

indicate the following: 

• Overall execution time of the transmit algorithm ranges from 0.012 to 

0.018 milliseconds for an array of 116 and 156 bytes, respectively and 

appears to be dependent on the size of the data array provided to the 

MessageDigest object, as expected. 
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• Overall execution time of the receive algorithm ranges from 0.014 to 

0.020 milliseconds for an array of 140 and 180 bytes, respectively.  This 

also appears to be dependent on the data array size.   

• The reception times are approximately 0.002 milliseconds slower that the 

transmit algorithm, probably due to the message digest comparison call. 

• An average of 0.026 milliseconds is required for integrity operations to be 

performed on a 116-byte data packet from one host to another. 

• An average of 0.038 milliseconds is required for integrity operations to be 

performed on a 156-byte data packet from one host to another. 

• The impact of this filter on delay is negligible 

 

IntegrityFilter-induced delay (milliseconds)
Data size (bytes) Transmit Receive Total Time
116/140 0.012 0.014 0.027
156/180 0.018 0.020 0.038
Difference 0.006 0.006 0.012  

Table 22.   Average Execution Times for IntegrityFilter’s Transmit/Receive Algorithms 
 

 
G. ANALYSIS OF OVERALL DELAY IMPACT 

Each of the filters imposes some delay on the overall transmission of an 

individual packet.  An analysis of the total time delay that is induced on a packet by all 

the filters combined is provided in Table 23.  As the total delay column indicates, the 

delay imposed on a packet of 116 bytes ranges from 0.082 to 0.220 milliseconds; and the 

delay for a packet of 156 bytes ranges from 0.111 to 0.295 milliseconds.   
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Cipher Algorithm: DES
Data Size SecureFilter SequenceFilter IntegrityFilter Total delay

116 0.077 0.006 0.027 0.109
156 0.102 0.006 0.038 0.146

Cipher Algorithm: DESede
Data Size SecureFilter SequenceFilter IntegrityFilter Total delay

116 0.188 0.006 0.027 0.220
156 0.250 0.006 0.038 0.295

Cipher Algorithm: Blowfish
Data Size SecureFilter SequenceFilter IntegrityFilter Total delay

116 0.050 0.006 0.027 0.082
156 0.066 0.006 0.038 0.111  

Table 23.   Total Time Delay Induced by all Filters per Cipher algorithm 

 

Since the filters were not tested under heavy packet transmission conditions, it is 

difficult to say if the delays identified in these studies will continue to hold for other 

workloads.  Further tests need to be conducted to characterize these delays.  As the data 

indicates, the impact of the all the filters combined on delay is less than 0.3 for DESede 

and less than 0.12 milliseconds for Blowfish.  The use of these security measures appears 

to require very little overhead.  

H. ANALYSIS OF OVERALL BANDWIDTH IMPACT 

Each of the filters increases the size of the data packet that is transmitted across 

the network.  These increases accumulate and may impact the required bandwidth for a 

specific RTEVE system.  As identified in Chapter IV, and presented in Table 24, each of 

the filters impact the size of the data packet in differing amounts, based on the performed 

operations.   

 

Filter Increase to Data Array Size
SecureFilter 4 - 11 bytes
SequenceFilter 12 bytes
IntegrityFilter 21 bytes  

Table 24.   Filter Impact on Data Array Size 
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If all the filters are placed in series, the total increase to a data array would be 

thirty-seven to forty-four bytes.  Depending on the application structure this could be 

quite an increase in bandwidth requirement (i.e., if the average packet were 100 bytes in 

length, it has now been increased by 44%) or minimal (i.e. if the average packet were 300 

bytes in length, then the increase is only 15%).  Either way, the main impact would be a 

function of the average number of packets transmitting at any point in time.  If the 

average number of packets on the network is 10,000 per second, as is anticipated for a 

large scale VE with 1000 participants transmitting 10 packets per second, then the 

overhead alone for using the three filters would be increased by 440,000 bytes (3,520,000 

bits); this is not an insignificant amount of bandwidth particularly if dealing with low-

bandwidth communication lines.   However, since most VE systems currently use some 

form of dead reckoning algorithm to reduce the amount of packet transmissions, the 

overhead caused by the increased packet size is most likely tolerable.  Moreover, with 

communication lines reaching 10Gbps, the impact may be negligible in some 

environments.   

Considering that most sensitive RTEVE applications requiring high levels of 

security will tend to have dedicated high-bandwidth communication lines, the impact in 

these environments would be minimal.  A detailed analysis needs to be conducted in this 

area to better determine the impact in the general case. 

I. SUMMARY 

This chapter presented an analysis of the three types of filter objects that were 

designed as part of the NSMS.  The analysis covered the impact that these filters had on 

the areas of delay and bandwidth. This analysis is basic in scope and should be expanded 

before firm conclusions are made as to their impact on QOS.  However, it appears that 

the impact on delay is negligible, while the increase in required bandwidth is acceptable 

and CPU usage is within acceptable limits.  The following chapter summarizes the 

conclusions of this work and discusses future work.   
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The research reported in this thesis serves as the basis for exploring a wide 

spectrum of information assurance areas, as they relate to RTEVEs.  We presented a 

taxonomy of RTEVE IA concerns, then explored some of the concerns in the context of a 

state-of-the-art RTEVE framework known as NPSNET-V.   

1. NSMS  

 The design of the filters supports the selection of the level of security to be 

applied in each virtual world.  The individual effects of the designed filters on delay and 

bandwidth were quantified.  The results lead us to conclude that security features on data 

packet transmissions are technically feasible for large-scale VE development with 

negligible impact on delay and acceptable impact on bandwidth.     

2. RTEVE Security 

 We discovered that the security of RTEVEs covers at least twenty-five 

different areas of information assurance.  Some areas have been significantly addressed 

by current research, while others have received little attention.  Nonetheless, each area 

must be addressed in some fashion whenever an RTEVE is developed, even if the 

decision is to not address it.  The level of security that is desired for an RTEVE must be 

identified by the intended user of the system, and then the system developed to those 

requirements.  

3. RTEVE Security System 

 A comprehensive RTEVE security system needs to have the ability to 

manage the RTEVE no matter how large it grows.  For a system such as NPSNET-V, 

with a goal of infinite scalability, this is a formidable challenge.  Secondly, it must 

contain a robust manner of detecting any intrusion whether known or novel, and 

successfully responding to neutralize the intrusion or minimize the impact, such as 

through intelligent management of the generation and distribution of encryption keys.  

However, there is still some likelihood that an attacker might find weaknesses in the 

security systems, or on the platforms in which the RTEVE resides. Therefore, we 
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conclude that the system should be updateable to allow for inclusion of new security 

policy and support mechanisms. 

B. FUTURE WORK 

The work accomplished in this thesis is merely a beginning to what can be a 

comprehensive distributed security management system for a VE.  New technologies are 

constantly being researched and developed. The following are functionalities that can be 

incorporated into this work for trusted RTEVEs. 

1. Perform a Comprehensive Statistical Analysis of the NSMS  

As briefly discussed in the previous chapter, the studies performed in this work 

are not comprehensive in addressing the impact on QOS issues.  A more thorough 

statistical analysis must be performed in order to identify the impact on QOS over ranges 

of system workloads.  This study should involve multiple applications, with hundreds of 

clients where possible, that are producing increasingly large numbers of data packets. 

2. Develop ‘Distributedness’ Capability of NSMS 

The ability of the NSMS to maintain desired levels of QOS and security as an 

NPSNET-V application expands must be assured.  A server-based structure is inefficient 

in a large-scale networked environment for many reasons, including the fact that it 

represents a single–point–of–failure. Also, key distribution to possibly thousands of 

participants is extremely inefficient, and would allow for a possibly compromised key to 

be active for an inordinate amount of time while a new key is distributed.  

A good starting point for this area would be to use the idea of a tree structure 

[Yerry84] for security management distribution, in which the management of security 

issues and keys is shared amongst all nodes of the tree.  Specific characteristics of this 

system would include: 

• The tree concept would allow for fast key distribution amongst all nodes 

of the tree.  The exponential increase in parallelism as the key traverses 

down the tree, with each node ensuring the distribution of the key to its 

siblings, allows for the operation of key distribution to be more efficient.   
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• The tree should be self-repairable; that is when a node is dropped from the 

tree, the tree structure below that node should be able to reconstitute itself 

back into the higher structure.   

• The tree must be self-policing, that is, if any node is acting suspicious, 

such as constantly changing the keys of its children for no reason, its 

children should be able to identify it as a subverted node, and remove it 

and reconstitute the tree from that point on forward. 

• Each node of the tree would be represented by a SecurityManager object 

within the NPSNET-V application that can act both as a server for the tree 

structure below it, and as the manager of filters for its own application. 

• To facilitate key management, each node should be the key manager for 

all filters below it that are not known anywhere else in the tree.  This way 

responsibility is maintained at the lowest level possible and does not 

unnecessarily burden higher level nodes in the tree. Each SecurityManager 

must be able to act as the server itself.  Or, each module can act as a key 

distribution point for any filters below it that are not known anywhere else 

in the structure. 

3. Intrusion Detection Capability 

An addition to any comprehensive security policy is the inclusion of an intrusion 

detection system, either signature- or anomaly-based.  The benefits of a good anomaly-

based system are obviously great and are preferred to those of a signature.  The IDS 

system concepts discussed in [Vigna98] and [Stillerman99] are an interesting place to 

proceed from.  Unfortunately, anomaly-based IDSs are still in their infancy and, 

therefore, beginning with a signature-based IDS to provide known intrusion detection 

would be a lower risk approach.   

4. Intrusion Response Capability 

Along with an intrusion detection capability, the system should possess an 

effective and efficient response capability in order to effectively protect the system and 

minimize effects of an attack.  Responses could take the form of denial of future 

connectivity to a malicious application, dynamic key changes in response to a discovered 
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compromise of the symmetric keys, or even the use of software decoys in order to learn 

more information about the attacker and the nature of the intrusion [Michael02].      

5. Increase Functionality of the NSMS 

The functionality of the NSMS can be expanded in many directions, such as the 

following: 

• Apply module integrity and authentication through the use of Jar-signing, 

message digests, or checksums. 

• Increase the capability of the filters by allowing the SecureServer to 

manipulate the message digest algorithms in the IntegrityFilter. 

• Connect the NSMS to a network monitor that informs the SecureServer of 

the current level of latency within the system, for the purpose of 

dynamically adjusting the generation and distribution of keys for the entire 

network with the aim of minimizing the period of key mismatch. 

• Incorporate an audit log that can be used for post-intrusion detection 

efforts.  The concerns that must be managed here are the trade-offs 

between amount of events that are recorded, amount of memory space 

available to use as a record file, and the rate at which the files are scanned 

for malicious activity.  Also, an adequate security measure needs to be 

provided for the log itself to prevent hackers from erasing their activities 

from the log.  

• Increase the number of key algorithms to choose from, and the breadth of 

chaining modes and padding schemes. Other providers have encryption 

packages that can be included for use with the system. 

• Have the sequence filter verify authenticity of new application IDs that 

appear on incoming packets with the SecureServer.  

• Address the security weaknesses identified in section I of chapter IV. 

  

 
 



93 

APPENDIX 

A. SAMPLE CONFIGURATION FILE 
<?xml version="1.0"?> 
<Configuration> 
    <Header> 
        <Meta name="description" content="DIS networking test (first client)."/> 
        <Meta name="author" content="Andrzej Kapolka"/> 
    </Header> 
    <Body> 
        <Include url="../include/base.xml"/> 
        <Include url="../include/gui.xml"/> 
        <Include url="../include/dis.xml"/> 
        <Container name="client_a"> 
            <World name="org/npsnet/v/worlds/examples/EmptyWorld.xml" 
                   modelName="modelCore"> 
                <Entity name="org/npsnet/v/entities/cameras/PilotableCamera.xml" 
                        modelName="pilotableCamera"/> 
                <Entity name="org/npsnet/v/entities/examples/Teapot.xml" 
modelName="teapot_a"> 
                    <Transform translation="-5 0 -20"/> 
                </Entity> 
            </World> 
            <Module class="org.npsnet.v.views.j3d.J3DViewCore"> 
                <Target name="modelCore"/> 
                <Viewport title="NPSNET-V: DIS Networking Test (Client A)"  
                          xPos="128" camera="modelCore/pilotableCamera"/> 
            </Module> 
            <Module class="org.npsnet.v.controllers.user.AWTControllerCore"> 
                <Target name="modelCore"/> 
                <Module 
class="org.npsnet.v.controllers.user.MouseContextMenuController"/> 
                <Module class="org.npsnet.v.controllers.user.MouseTransformController"/> 
            </Module> 
            <Module class="org.npsnet.v.controllers.network.dis.DISControllerCore"> 
                <Target name="modelCore"/> 
                <Module class="org.npsnet.v.channels.AggregatingChannel"> 
                    <Module class="org.npsnet.v.channels.MulticastChannel"> 
                        <Address value="225.93.23.93"/> 
                    </Module> 
                </Module> 
            </Module> 
        </Container> 
    </Body> 
 

This configurations file generates a world that first incorporates three base functionality 

architectures identified as ‘Base.xml”, “gui.xml”, and “dis.xml.” These are attached beneath the 

Kernel of the system.  Below the Kernel, another container called “client a” is created.   This 

container holds four modules below it; those are: “EmptyWorld”, which contains a 

“pilotableCamera” entity and a “teapot” entity; “j3DViewCore”, which is associated with the 

pilotableCamera; “AWTControllerCore”, which contains a “MouseContextMenuController” and a 

“MouseTransformController” that are used for entity manipulation; and the “DISControllerCore”, 

which contains an “AggregatingChannel”, which contains a “MulticastChannel’ module.  

 This file will generate a world with a teapot that can be controlled with the 

mouse, and communicates using DIS protocols through a multicast channel. 
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B. NPSNET-V SOURCE CODE 

It should be noted that the NSMS system developed in this thesis is not a 

standalone work.  Components of the system are spread throughout the module areas of 

NPSNET-V and can function only as modules of NPSNET-V.  The complete NPSNET-V 

system, including source code, documentation, and points of contact are located in a CVS 

repository at following webpage: 

http://sourceforge.net/projects/npsnetv/ 

NPSNET-V is constantly in progress.  Contributors and developers are welcome 

to join in the development efforts associated with this RTEVE project.  Contact one of 

the Project Administrators for information on the current status of the system and how to 

become a contributor.  

The below table identifies the locations of the NSMS source files discussed in this 

work within the NPSNET-V file structure. 

Source File Location
SecureServer servers
SecureServerGUI servers
SecureServerConnection servers
KeyMaker servers

SecureFilter channels
IntegrityFilter channels
SequenceFilter channels
StandardSecurityManager system
SecurityManager services\system
SecurityManagerSubscriber services\system
SecretKeyPack services\system

All locations are relative to the directory: npsnetv\source\org\npsnet\v\  
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C. SAMPLE NSMS XML CONFIGURATION FILE 
<?xml version="1.0"?> 
<Configuration> 
    <Header> 
        <Meta name="description" content="NSMS secure test B"/> 
        <Meta name="author" content="Andrzej Kapolka"/> 
    </Header> 
    <Body> 
        <Include url="../include/base.xml"/> 
        <Include url="../include/gui.xml"/> 
        <Include url="../include/dis.xml"/> 
        <Module class="org.npsnet.v.system.StandardSecurityManager"/> 
        <Container name="client_b"> 
            <World name="org/npsnet/v/worlds/examples/EmptyWorld.xml" 
                   modelName="modelCore"> 
                <Entity name="org/npsnet/v/entities/cameras/PilotableCamera.xml" 
                        modelName="pilotableCamera"/> 
                <Entity name="org/npsnet/v/entities/munitions/antiship/SphericalMine.xml" modelName="teapot_b"> 
                    <Transform translation="2 0 -20"/>  
                </Entity> 
                <Entity name="org/npsnet/v/entities/environment/StandardExplosionManager.xml"/> 
            </World> 
            <Module class="org.npsnet.v.views.j3d.J3DViewCore"> 
                <Target name="modelCore"/> 
                <Viewport title="NPSNET-V: DIS Networking Test (Client B)"  
                          xPos="656" camera="modelCore/pilotableCamera"/> 
            </Module> 
            <Module class="org.npsnet.v.controllers.user.AWTControllerCore"> 
                <Target name="modelCore"/> 
                <Module class="org.npsnet.v.controllers.user.MouseContextMenuController"/> 
                <Module class="org.npsnet.v.controllers.user.MouseTransformController"/> 
            </Module> 
            <Module class="org.npsnet.v.controllers.network.dis.DISControllerCore"> 
                <Target name="modelCore"/> 
                <Module class="org.npsnet.v.channels.SequenceFilter"> 
       <Set name="ID" value = "seq92"/> 
                    <Module class="org.npsnet.v.channels.IntegrityFilter"> 
           <Set name="ID" value = "int92"/> 
                        <Module class="org.npsnet.v.channels.SecureFilter"> 
                  <Set name="ID" value = "sec92"/> 
                            <Module class="org.npsnet.v.channels.MulticastChannel"> 
                                <Address value="225.93.23.92"/> 
                            </Module> 
                        </Module> 
                    </Module> 
                </Module> 
                <Module class="org.npsnet.v.channels.SecureFilter"> 
       <Set name="ID" value = "sec96"/> 
                    <Module class="org.npsnet.v.channels.MulticastChannel"> 
                        <Address value="225.93.23.96"/> 
                    </Module> 
                </Module> 
            </Module> 
        </Container> 
    </Body> 
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D. SEQUENCE FILTER CODE 
package org.npsnet.v.channels; 
 
import java.io.*; 
import java.util.*; 
import java.security.*; 
import java.security.spec.*; 
import java.util.Timer; 
import java.util.TimerTask; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
import org.npsnet.v.kernel.Module; 
import org.npsnet.v.kernel.ModuleContainer; 
import org.npsnet.v.kernel.ModuleContainerEvent; 
import org.npsnet.v.kernel.PropertyBearerListener; 
import org.npsnet.v.kernel.PropertyBearerRegistrationEvent; 
import org.npsnet.v.kernel.PropertyBearerDeregistrationEvent; 
 
import org.npsnet.v.properties.channel.Channel; 
import org.npsnet.v.properties.channel.DataPacket; 
import org.npsnet.v.properties.channel.ReceivedPacketListener; 
 
import org.npsnet.v.services.system.SecurityManagerSubscriber; 
import org.npsnet.v.services.system.SecretKeyPack; 
import org.npsnet.v.services.system.SecurityManager; 
 
/** 
 * A filter channel that performs Sequencing functions on the passed packets. 
 * The outbound packets have the 8-byte application ID and a 4-byte integer 
 * sequence number appended to the data before transmittal. 
 *  The sequence number is initialized to a random number in order to prevent 
 *  guessing by an attacker. 
 * 
 * incoming packets are verified for proper sequencing.  If the packet is the 
 *   first one seen from a previously unknown application, the filter wiil 
 *   register the application an dbegin tracking the sequence numbers. 
 *   the sequence number of any new packet must be at most 20 units greater than 
 *   the previously seen packet for that applicationID.  RollOver is followed, 
 *   that is when an application reaches the maximum integer value, it will 
 *   'rollover' and begin at the lowest integer value. 
 * This class can only function if a SecurityManager object is included in 
 *  the application structure. 
 *  Does not register with the securityManager until the setID method is called 
 *  by the XML confiduration file 
 * 
 * Any out of sequence and repeat packets will be dropped, thus addressing the 
 * replay attack. 
 * 
 * the 'filter' functionality is based on the aggregate filter authored 
 * by Andrzej Kapolka 
 * 
 * @author Ernesto Salles 
 */ 
 
public class SequenceFilter extends ModuleContainer 
                            implements Channel, ReceivedPacketListener, 
                                       PropertyBearerListener, 
                                       SecurityManagerSubscriber 
{ 
    /** 
    * boolean used to signal the filter to transmit 
    */ 
    boolean okToTransmit; 
 
    /** 
     * boolean used to signal the filter to receive 
     */ 
    boolean okToReceive; 
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    /** 
     * the sequence number for outbound packets from this filter 
     */ 
    int seqNum; 
 
    /** 
     * The application ID 
     */ 
    long applicationID; 
 
    /** 
     * The filter's ID 
     */ 
    String filterID; 
 
    /** 
     * The list of channel listeners. 
     */ 
    private Vector receivedPacketListeners; 
 
    /** 
     * The SecurityManager 
     */ 
    private SecurityManager securityManager; 
 
    /** 
     * the outputstream used to generate byte arrays 
     */ 
    ByteArrayOutputStream baos; 
 
    /** 
     * Used to input data into the baos 
     */ 
    DataOutputStream dos; 
 
    /** 
     * a table containing applications that are communicatig on this comms path, 
     *  and their sequence numbers for replay attack prevention 
     */ 
    Hashtable appSequenceTable; 
 
    /** 
     * Constructor.  Initialize the required objects and turns the filter off 
     */ 
    public SequenceFilter() 
    { 
        receivedPacketListeners = new Vector(); 
        this.endPacketTransmission(); 
        this.endPacketReception(); 
        applicationID = 0; 
        Random rnd = new Random(); 
        seqNum = rnd.nextInt(); 
        this.println("initial sequence number is: " + seqNum); 
        appSequenceTable = new Hashtable(); 
        try{ 
          baos = new ByteArrayOutputStream(); 
          dos = new DataOutputStream(baos); 
        } 
        catch(Exception e){} 
    } 
 
    /** 
     * Initializes this module. 
     */ 
    public void init(){ 
      // Register with self as registration listener 
      addPropertyBearerListener(Channel.class,this); 
      super.init(); 
    } 
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    /** 
     * Takes the given packet, and adds the application ID and a sequence number 
     * to the data then sends the new packet on its way 
     * 
     * @param packet the packet to be sent 
     * @exception IOException if an error occurs 
     */ 
    public synchronized void sendPacket(DataPacket packet) throws IOException 
    { 
 
      // if the filter is ok to transmit 
      if (okToTransmit){ 
        byte[] dataArray = new byte[1]; 
        try{ 
 
          //gets the data from the packet, and appends the applicationID and sequence 
          //   number to the beginning 
          byte[] packetData = packet.getData(); 
          baos.reset(); 
          dos.writeLong(applicationID); 
          dos.writeInt(seqNum); 
          dos.write(packetData,0,packetData.length); 
          dataArray = baos.toByteArray(); 
 
          // if the sequnce number is the Maximum Integer Value, then assign it the 
          //   Minimum integer Value, else increment it.  This 'roll-over' ensures 
          //  sequence number continuity when the maximum value has been reached 
          if(seqNum == Integer.MAX_VALUE){ 
            seqNum = Integer.MIN_VALUE; 
            this.println("Sequence Number rollover"); 
          } 
          else {seqNum++;} 
        } 
        catch(Exception e){} 
 
        // create a new packet with the enciphered data 
        DataPacket dp = new DataPacket(dataArray); 
        dp.setLength(dataArray.length); 
        dp.setOffset(0); 
 
        // send the enciphered data packet out to the listening channels 
        Enumeration enum = getPropertyBearers(Channel.class); 
        while(enum.hasMoreElements()) 
        { 
          try 
          { 
            ((Channel)enum.nextElement()).sendPacket(dp); 
          } 
          catch(IOException ioe) 
          { 
            System.out.println(ioe); 
          } 
        } 
      } 
    } 
 
    /** 
     * Called when a packet is received. 
     * 
     * @param c the channel on which the packet was received 
     * @param packet the received packet 
     */ 
    public void packetReceived(Channel c, DataPacket packet) 
    { 
      try{ 
        if (okToReceive){ 
 
          // extract the data from the packet into the correctly sized array 
          byte[] dataArray = new byte[packet.getLength()]; 
          System.arraycopy(packet.getData(), 0, 
                           dataArray, 0, packet.getLength()); 
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          //extract the applicationID, sequence number, and clear data from the 
          //   deciphered data array 
          ByteArrayInputStream bais = new ByteArrayInputStream(dataArray); 
          DataInputStream dis = new DataInputStream(bais); 
          long appID = dis.readLong(); 
          int sequenceNum = dis.readInt(); 
          byte[] newData = new byte[dis.available()]; 
          dis.read(newData); 
 
          // check the sequence number & ID of the packet 
          boolean packetOK = this.checkIDandSequence(appID,sequenceNum); 
 
          // if there actually is data, and the packet is ok to send, then 
          //   package it into a new packet and send it on 
          if ((newData != null) &&(packetOK) ){ 
            DataPacket dp = new DataPacket(newData); 
            dp.setLength(newData.length); 
            dp.setOffset(0); 
 
            Enumeration enum = receivedPacketListeners.elements(); 
            while(enum.hasMoreElements()) 
            { 
              ((ReceivedPacketListener)enum.nextElement()).packetReceived(this,dp); 
            } 
          } 
        } 
      } 
      catch(Exception e){ 
        System.out.println(e); 
      } 
    } 
 
 
    /** 
     * checks the sequence number of the given applicationID to prevent replay 
     * 
     * @param appID   the applicationID 
     * @param seqNum  the sequence number 
     * 
     * @return boolean true if the sequence # is good, 
     *                 false if the sequence number is bad 
     */ 
     private boolean checkIDandSequence(long appID, int seqNum){ 
      Long appIDNum = new Long(appID); 
      Integer seqNumber = new Integer(seqNum); 
 
      // if the packet is this application's own packet, reject it 
      if (applicationID == appID) { 
        return false; 
      } 
 
      // if the packet's application ID is already known, then check the 
      //   sequence number 
      if(appSequenceTable.containsKey(appIDNum)){ 
        Integer lastSeq = (Integer) appSequenceTable.get(appIDNum); 
        int lastSeqNum = lastSeq.intValue(); 
 
        // if the last packet's sequence number is less than this packet's 
        //    sequence number by 20, then the packet is good; replace the sequence 
        //    number in the table with the new one 
        int difference = (seqNum - lastSeqNum); 
 
        // this covers all cases if the last sequence number is below 
        //    (Max Integer value - 20), and if both sequence numbers 
        //    are greater than 0. 
        if((difference > 0) && (difference < 20)){ 
          Integer temp = (Integer)appSequenceTable.put(appIDNum,seqNumber); 
          return true; 
        } 
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        // this covers the times when the old sequence number is greater than 
        //    (Max Integer value - 20), and the new number is less than zero 
        //     ie. the rollover area 
        else if (((Integer.MAX_VALUE - lastSeqNum) < 20) && (seqNum < 0)){ 
          int buffer = Integer.MAX_VALUE - lastSeqNum; 
          if(seqNum < (Integer.MIN_VALUE + (20-buffer))){ 
            Integer temp = (Integer)appSequenceTable.put(appIDNum,seqNumber); 
            this.println(" sequence rollover for app " + appID); 
            return true; 
          } 
        } 
        // else the packet is out of sequence and is rejected 
        else { 
          this.println("out-of-order sequence number; "); 
          System.out.println("old: " + lastSeq.intValue() + " new: " + seqNum); 
          return false; 
        } 
      } 
 
      // if this is the first time seeing this application ID, then place the 
      //   data into the table 
      else{ 
        this.println("new ApplicationID discovered; adding to table"); 
        appSequenceTable.put(appIDNum,seqNumber); 
      } 
      return true; 
    } 
 
 
    /** 
     * Adds a listener to the list of objects interested 
     * in incoming packets. 
     * 
     * @param rcl the listener object to add 
     */ 
    public void addReceivedPacketListener(ReceivedPacketListener rcl) 
    { 
        receivedPacketListeners.add(rcl); 
    } 
 
    /** 
     * Removes a listener object from the list of objects 
     * interested in incoming packets. 
     * 
     * @param rcl the listener object to remove 
     */ 
    public void removeReceivedPacketListener(ReceivedPacketListener rcl) 
    { 
        receivedPacketListeners.remove(rcl); 
    } 
 
    /** 
     * Invoked when a property bearer is registered. 
     * 
     * @param pbre the event object 
     */ 
    public void propertyBearerRegistered(PropertyBearerRegistrationEvent pbre) 
    { 
        ((Channel)pbre.getRegisteredPropertyBearer()).addReceivedPacketListener(this); 
    } 
 
    /** 
     * Invoked when a property bearer is deregistered. 
     * 
     * @param pbde the event object 
     */ 
    public void propertyBearerDeregistered(PropertyBearerDeregistrationEvent pbde) 
    { 
        ((Channel)pbde.getDeregisteredPropertyBearer()). 
                                               removeReceivedPacketListener(this); 
    } 
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    /** 
     * Begins the transmission of packets 
     */ 
    public void beginPacketTransmission(){ 
      okToTransmit = true; 
      this.println("begin transmit **"); 
    } 
 
    /** 
     * Stops the transmission of packets 
     */ 
    public void endPacketTransmission(){ 
      okToTransmit = false; 
      this.println("end transmit **"); 
    } 
    /** 
     * Begins the reception of packets 
     */ 
    public void beginPacketReception(){ 
      okToReceive = true; 
      this.println("begin receive **"); 
    } 
 
    /** 
     * Stops the reception of packets 
     */ 
    public void endPacketReception(){ 
      okToReceive = false; 
      this.println("end receive **"); 
    } 
 
    /** 
     * Sets the applications' ID 
     * 
     * @param id  the application's id 
     */ 
    public void setApplicationID(long id){ 
      applicationID = id; 
      this.println("Application ID set: " + applicationID); 
    } 
 
    /** 
     * sets the Filter's ID, and register the filter with the security manager 
     * 
     * @param  id  the filter's id 
     */ 
    public void setID(String id){ 
      filterID = id; 
      this.println("filter ID set to: " + filterID); 
      this.println("registering with SM"); 
      securityManager = (SecurityManager) getServiceProvider(SecurityManager.class); 
      securityManager.addSecureSubscriber(this); 
    } 
 
    /** 
     * gets the filter's ID 
     * 
     * @return String the filter's id 
     */ 
     public String getID(){ 
      return filterID; 
     } 
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    /** 
     * returns the filter's type as identified in the 
     *  SecurityManagerSubscriber Interface 
     * 
     * @return int  the filter's type 
     */ 
    public int getFilterType(){ 
      return this.SEQUENCE_FILTER_TYPE; 
    } 
 
    /** 
     * An empty method. must be implemented due to interface 
     */ 
    public SecretKeyPack getCurrentKeyPack(){ 
      return null; 
    } 
 
    /** 
     * An empty method. must be implemented due to interface 
     */ 
    public Vector getAllKeyPacks() { 
      return null; 
    } 
 
    /** 
     * An empty method. must be implemented due to interface 
     */ 
    public synchronized void addKeyPack(SecretKeyPack keyPack){ 
    } 
 
    /** 
     * Synonymous with 'System.out.println', only it produces a class 
     * specific header before the passed String for ease of output 
     * identification 
     * 
     * @param aLine   the String to print out 
     */ 
    private void println(String aLine){ 
 
      // call the 'print' method, passing the provided String object 
      //   concatenated with a carriage return 
      this.print(aLine.concat("\n")); 
    } 
 
    /** 
     * Synonymous with 'System.out.print', only it produces a class 
     * specific header before the passed String for ease of output 
     * identification 
     * 
     * @param aLine   the String to print out 
     */ 
    private void print(String aLine){ 
      System.out.print("  Sequence Filter (" + filterID + "): " + aLine); 
    } 
} 
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E. INTEGRITY FILTER CODE 
package org.npsnet.v.channels; 
 
import java.io.*; 
import java.util.*; 
import java.security.*; 
 
import org.npsnet.v.kernel.Module; 
import org.npsnet.v.kernel.ModuleContainer; 
import org.npsnet.v.kernel.ModuleContainerEvent; 
import org.npsnet.v.kernel.PropertyBearerListener; 
import org.npsnet.v.kernel.PropertyBearerRegistrationEvent; 
import org.npsnet.v.kernel.PropertyBearerDeregistrationEvent; 
 
import org.npsnet.v.properties.channel.Channel; 
import org.npsnet.v.properties.channel.DataPacket; 
import org.npsnet.v.properties.channel.ReceivedPacketListener; 
 
import org.npsnet.v.services.system.SecurityManagerSubscriber; 
import org.npsnet.v.services.system.SecretKeyPack; 
import org.npsnet.v.services.system.SecurityManager; 
 
 
/** 
 * A filter channel that performs integrity operations on data packets.  It uses 
 * the MessageDigest object to generate and verify message digests.  This 
 * implementation uses the default algorithm of SHA, which produces a 20-byte 
 * message digest.  The algorithm also places one-byte in the beginning of the 
 * data array that indicates the size of the digest. 
 * 
 * This class can only function if a SecurityManager object is included in 
 *  the application structure. 
 * Does not register with the securityManager until the setID method is called 
 * by the XML configuration file 
 * 
 * the 'filter' functionality is based on the aggregate filter authored 
 * by Andrzej Kapolka 
 * @author Ernesto Salles 
 */ 
 
public class IntegrityFilter extends ModuleContainer 
                                implements Channel, ReceivedPacketListener, 
                                           PropertyBearerListener, 
                                           SecurityManagerSubscriber{ 
 
    /** 
    * boolean used to signal the filter to transmit 
    */ 
    boolean okToTransmit; 
 
    /** 
     * boolean used to signal the filter to receive 
     */ 
    boolean okToReceive; 
 
    /** 
     * The application ID 
     */ 
    long applicationID; 
 
    /** 
     * The filter's ID 
     */ 
    String filterID; 
 
    /** 
     * The list of channel listeners. 
     */ 
    private Vector receivedPacketListeners; 
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    /** 
     * The SecurityManager 
     */ 
    private SecurityManager securityManager; 
 
    /** 
     * the stream used to create byte arrays 
     */ 
    ByteArrayOutputStream baos; 
 
    /** 
     * used to input data into the baos 
     */ 
    DataOutputStream dos; 
 
    /** 
     * message digest generator used for transmission 
     */ 
    MessageDigest transmitMessageDigester; 
 
    /** 
     * message digest generator used for verifying incomming data 
     */ 
    MessageDigest messageDigestChecker; 
 
    /** 
     * Constructor.  initializes the required objects and turns off the filter 
     */ 
    public IntegrityFilter() 
    { 
      try{ 
        transmitMessageDigester = MessageDigest.getInstance("SHA"); 
        messageDigestChecker = MessageDigest.getInstance("SHA"); 
        receivedPacketListeners = new Vector(); 
        this.endPacketTransmission(); 
        this.endPacketReception(); 
        applicationID = 0; 
        baos = new ByteArrayOutputStream(); 
        dos = new DataOutputStream(baos); 
      } 
      catch(Exception e){} 
    } 
 
    /** 
     * Initializes this module. 
     */ 
    public void init() 
    { 
      // Register with self as registration listener 
      addPropertyBearerListener(Channel.class,this); 
      super.init(); 
    } 
 
    /** 
     * Sends a packet over this channel. 
     * 
     * @param packet the packet to be sent 
     * @exception IOException if an error occurs 
     */ 
    public synchronized void sendPacket(DataPacket packet) throws IOException 
    { 
      // if it is ok to transmit then create the digest and new packet and send it 
      if (okToTransmit){ 
        byte[] dataArray = new byte[1]; 
        try{ 
 
          //gets the data from the packet, then feeds it to the message digest 
          //   generator and retrieve the digest 
          byte[] packetData = packet.getData(); 
          transmitMessageDigester.update(packetData); 
          byte[] digest = transmitMessageDigester.digest(); 



109 

 
          // reset the byteArrayOutputStream and generate the new byteArray, 
          //  first the digest length, then the digest, and finally the data array 
          //   Then get the new data array 
          baos.reset(); 
          dos.writeByte(digest.length); 
          dos.write(digest,0,digest.length); 
          dos.write(packetData,0,packetData.length); 
          dataArray = baos.toByteArray(); 
        } 
        catch(Exception e){} 
 
        // create a new packet with the data 
        DataPacket dp = new DataPacket(dataArray); 
        dp.setLength(dataArray.length); 
        dp.setOffset(0); 
 
        // send the data packet out to the listening channels 
        Enumeration enum = getPropertyBearers(Channel.class); 
 
        while(enum.hasMoreElements()) 
        { 
          try 
          { 
            ((Channel)enum.nextElement()).sendPacket(dp); 
          } 
          catch(IOException ioe) 
          { 
            System.out.println(ioe); 
          } 
        } 
      } 
    } 
 
    /** 
     * Called when a packet is received. 
     * 
     * @param c the channel on which the packet was received 
     * @param packet the received packet 
     */ 
    public void packetReceived(Channel c, DataPacket packet) 
    { 
      try{ 
        if (okToReceive){ 
 
          // extract the data from the packet into the correctly sized array 
          byte[] dataArray = new byte[packet.getLength()]; 
          System.arraycopy(packet.getData(), 0, 
                         dataArray, 0, packet.getLength()); 
 
          //extract the digest length, digest, and data from the packet array 
          ByteArrayInputStream bais = new ByteArrayInputStream(dataArray); 
          DataInputStream dis = new DataInputStream(bais); 
          int digestLength = new Byte(dis.readByte()).intValue(); 
          byte[] digest = new byte[digestLength]; 
          dis.read(digest); 
          byte[] newData = new byte[dis.available()]; 
          dis.read(newData); 
 
          // check the sequence number & ID of the packet 
          boolean packetOK = this.verifyDigest(digest,newData); 
 
          // if there actually is data, and the packet is ok to send, then 
          //   package it into a new packet 
          DataPacket dp = new DataPacket(newData); 
          dp.setLength(newData.length); 
          dp.setOffset(0); 
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          // if the packet is OK to keep sending, then send it 
          if (packetOK){ 
            Enumeration enum = receivedPacketListeners.elements(); 
            while(enum.hasMoreElements()) 
            { 
              ((ReceivedPacketListener)enum.nextElement()).packetReceived(this,dp); 
            } 
          } 
          else {this.println("Integrity check failed");} 
        } 
      } 
      catch(Exception e){ 
        e.printStackTrace(); 
      } 
    } 
 
    /** 
     * Generates a digest of the provided data array, and compares it to 
     *  the provided digest.  Returns true is the match, false if not 
     * 
     * @param digest    the digest to compare the new one to 
     * @param data      the data to verify 
     * @return boolean  the verdict 
     */ 
    private boolean verifyDigest(byte[] digest, byte[] data){ 
      messageDigestChecker.update(data); 
      if (MessageDigest.isEqual(messageDigestChecker.digest(),digest)){ 
        return true; 
      } 
      return false; 
     } 
 
    /** 
     * Adds a listener to the list of objects interested 
     * in incoming packets. 
     * 
     * @param rcl the listener object to add 
     */ 
    public void addReceivedPacketListener(ReceivedPacketListener rcl) 
    { 
        receivedPacketListeners.add(rcl); 
    } 
 
    /** 
     * Removes a listener object from the list of objects 
     * interested in incoming packets. 
     * 
     * @param rcl the listener object to remove 
     */ 
    public void removeReceivedPacketListener(ReceivedPacketListener rcl) 
    { 
        receivedPacketListeners.remove(rcl); 
    } 
 
    /** 
     * Invoked when a property bearer is registered. 
     * 
     * @param pbre the event object 
     */ 
    public void propertyBearerRegistered(PropertyBearerRegistrationEvent pbre) 
    { 
        ((Channel)pbre.getRegisteredPropertyBearer()).addReceivedPacketListener(this); 
    } 
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    /** 
     * Invoked when a property bearer is deregistered. 
     * 
     * @param pbde the event object 
     */ 
    public void propertyBearerDeregistered(PropertyBearerDeregistrationEvent pbde) 
    { 
        ((Channel)pbde.getDeregisteredPropertyBearer()). 
                                               removeReceivedPacketListener(this); 
    } 
 
    /** 
     * Begins the transmission of packets 
     */ 
    public void beginPacketTransmission(){ 
      okToTransmit = true; 
      this.println("begin transmit **"); 
    } 
 
    /** 
     * Stops the transmission of packets 
     */ 
    public void endPacketTransmission(){ 
      okToTransmit = false; 
      this.println("end transmit **"); 
    } 
 
    /** 
     * Begins the reception of packets 
     */ 
    public void beginPacketReception(){ 
      okToReceive = true; 
      this.println("begin receive **"); 
    } 
 
    /** 
     * Stops the reception of packets 
     */ 
    public void endPacketReception(){ 
      okToReceive = false; 
      this.println("end receive **"); 
    } 
 
    /** 
     * Sets the applications' ID 
     * 
     * @param id  the application's ID 
     */ 
    public void setApplicationID(long id){ 
      applicationID = id; 
      this.println("Application ID set: " + applicationID); 
    } 
 
    /** 
     * sets the Filter's ID, and registers with the security manager 
     * 
     * @param this filter's ID 
     */ 
    public void setID(String id){ 
      filterID = id; 
      this.println("filter ID set to: " + filterID); 
      this.println("registering with SM"); 
      securityManager = (SecurityManager) getServiceProvider(SecurityManager.class); 
      securityManager.addSecureSubscriber(this); 
    } 
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    /** 
     * returns the filter's ID 
     * 
     * @return String   the filter's id 
     */ 
    public String getID(){ 
      return filterID; 
    } 
 
    /** 
     * returns the filter's type as identified in the 
     *  SecurityManagerSubscriber Interface 
     * 
     * @return int   the filter's type 
     */ 
    public int getFilterType(){ 
      return this.INTEGRITY_FILTER_TYPE; 
    } 
 
    /** 
     * An empty method.  must be implemented due to interface 
     */ 
    public SecretKeyPack getCurrentKeyPack(){ 
      return null; 
    } 
 
    /** 
     * An empty method. must be implemented due to interface 
     */ 
    public Vector getAllKeyPacks() { 
      return null; 
    } 
 
    /** 
     * an empty method.  must be implemented due to interface 
     */ 
    public synchronized void addKeyPack(SecretKeyPack keyPack){ 
    } 
 
    /** 
     * Synonymous with 'System.out.println', only it produces a class 
     * specific header before the passed String for ease of output 
     * identification 
     * 
     * @param aLine   the String to print out 
     */ 
    public void println(String aLine){ 
 
      // call the 'print' method, passing the provided String object 
      //   concatenated with a carriage return 
      this.print(aLine.concat("\n")); 
    } 
 
    /** 
     * Synonymous with 'System.out.print', only it produces a class 
     * specific header before the passed String for ease of output 
     * identification 
     * 
     * @param aLine   the String to print out 
     */ 
    public void print(String aLine){ 
      System.out.print("  Integrity Filter (" + filterID + "): " + aLine); 
    } 
 
} 
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F. SECURE FILTER CODE 
package org.npsnet.v.channels; 
 
import java.io.*; 
import java.util.*; 
import java.security.*; 
import java.security.spec.*; 
import java.util.Timer; 
import java.util.TimerTask; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
import org.npsnet.v.kernel.Module; 
import org.npsnet.v.kernel.ModuleContainer; 
import org.npsnet.v.kernel.ModuleContainerEvent; 
import org.npsnet.v.kernel.PropertyBearerListener; 
import org.npsnet.v.kernel.PropertyBearerRegistrationEvent; 
import org.npsnet.v.kernel.PropertyBearerDeregistrationEvent; 
 
import org.npsnet.v.properties.channel.Channel; 
import org.npsnet.v.properties.channel.DataPacket; 
import org.npsnet.v.properties.channel.ReceivedPacketListener; 
 
import org.npsnet.v.services.system.SecurityManagerSubscriber; 
import org.npsnet.v.services.system.SecretKeyPack; 
import org.npsnet.v.services.system.SecurityManager; 
import org.npsnet.v.services.time.TimeProvider; 
 
/** 
 * A filter channel that performs encryption on the provided dataPackets. 
 * 
 * Cipher keys are provided to it through the use of SecretKeyPacks received from 
 * the SecurityManager object with which it is associated.  This class can only 
 * functions if a SecurityManager object is included in the application 
 * structure. 
 * Does not register with the securityManager until the setID method is called 
 * by the XML confiduration file 
 * 
 * For outbound packets, it produces data arrays that are 4 to 11 bytes longer 
 * than the original data:  4 bytes are added for the key ID, and 0-7 bytes are 
 * added due to the padding scheme of the cipher. 
 * 
 * Key algorithms which are known to function within this class are DES, DESede, 
 *  and Blowfish.  Only CBC or chaining mode has been verified fnctional. 
 * 
 * the 'filter' functionality is based on the aggregate filter authored 
 * by Andrzej Kapolka 
 * 
 * @author Ernesto Salles 
 */ 
 
public class SecureFilter extends ModuleContainer 
                                implements Channel, ReceivedPacketListener, 
                                           PropertyBearerListener, 
                                           SecurityManagerSubscriber{ 
 
    /** 
    * boolean used to signal the filter to transmit 
    */ 
    boolean okToTransmit; 
 
    /** 
     * boolean used to signal the filter to receive 
     */ 
    boolean okToReceive; 
 
 
 
 



114 

    /** 
     * The application ID 
     */ 
    long applicationID; 
 
    /** 
     * The filter's ID 
     */ 
    String filterID; 
 
    /** 
     * The list of channel listeners. 
     */ 
    private Vector receivedPacketListeners; 
 
    /** 
     * Timer used in scheduling key change evolutions 
     */ 
    private Timer keyChangeTimer; 
 
    /** 
     * The current KeyPack 
     */ 
    SecretKeyPack currentKeyPack = null; 
 
    /** 
     * The KeyPacks awaiting to begin use,by order of start time 
     */ 
    Vector nextKeyPacks; 
 
    /** 
     * The current encryption key 
     */ 
    private SecretKey currentKey; 
 
    /** 
     * The timer object used for key changes 
     */ 
    private TimeProvider timeProvider; 
 
     /** 
      * The SecurityManager 
      */ 
     private SecurityManager securityManager; 
 
    /** 
     * The outbound encipher engine 
     */ 
    Cipher encipherer; 
 
    /** 
     * The inbound decipher engine 
     */ 
 
    Cipher decipherer; 
 
    /** 
     * Constructor.  initializes the objects of the filter and turns the filter off. 
     */ 
    public SecureFilter() 
    { 
        receivedPacketListeners = new Vector(); 
        nextKeyPacks = new Vector(); 
        keyChangeTimer = new Timer(); 
        this.endPacketTransmission(); 
        this.endPacketReception(); 
        applicationID = 0; 
        currentKeyPack = null; 
    } 
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    /** 
     * Initializes this module. 
     */ 
    public void init() 
    { 
        // Register with self as registration listener 
 
        addPropertyBearerListener(Channel.class,this); 
        timeProvider = (TimeProvider) getServiceProvider(TimeProvider.class); 
      super.init(); 
    } 
 
    /** 
     * encrypt a given packet and send it out to the next channel object. 
     * 
     * @param packet the packet to be sent 
     * @exception IOException if an error occurs 
     */ 
    public synchronized void sendPacket(DataPacket packet) throws IOException 
    { 
 
      // if the filter is ok to transmit, then encipher the data and transmit 
      if (okToTransmit){ 
 
        // encrypt the packet's datapassed data array 
        byte[] cipherArray  = encipherData(packet.getData()); 
 
        // create a new packet with the enciphered data 
        DataPacket dp = new DataPacket(cipherArray); 
        dp.setLength(cipherArray.length); 
        dp.setOffset(0); 
 
 
 
        // send the new packet out to the listening channels 
        Enumeration enum = getPropertyBearers(Channel.class); 
        while(enum.hasMoreElements()) 
        { 
          try 
          { 
            ((Channel)enum.nextElement()).sendPacket(dp); 
          } 
          catch(IOException ioe) 
          { 
            System.out.println(ioe); 
          } 
        } 
      } 
    } 
 
    /** 
     * Called when a packet is received. 
     * 
     * @param c the channel on which the packet was received 
     * @param packet the received packet 
     */ 
    public synchronized void packetReceived(Channel c, DataPacket packet) 
    { 
      try{ 
        if (okToReceive){ 
 
          // extract the data from the packet into the correctly sized array 
          byte[] cypherArray = new byte[packet.getLength()]; 
          System.arraycopy(packet.getData(), 0, 
                           cypherArray, 0, packet.getLength()); 
 
          // decipher the data array 
          byte[] clearData = decipherData(cypherArray); 
 
          // if there actually is data, then 
          //   package it into a new packet and send it up 
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          if (clearData != null){ 
            DataPacket dp = new DataPacket(clearData); 
            dp.setLength(clearData.length); 
            dp.setOffset(0); 
 
            Enumeration enum = receivedPacketListeners.elements(); 
            while(enum.hasMoreElements()) 
            { 
              ((ReceivedPacketListener)enum.nextElement()).packetReceived(this,dp); 
            } 
          } 
        } 
      } 
      catch(Exception e){ 
        System.out.println(e); 
      } 
    } 
 
    /** 
     * Adds a listener to the list of objects interested 
     * in incoming packets. 
     * 
     * @param rcl the listener object to add 
     */ 
    public void addReceivedPacketListener(ReceivedPacketListener rcl) 
    { 
        receivedPacketListeners.add(rcl); 
    } 
 
    /** 
     * Removes a listener object from the list of objects 
     * interested in incoming packets. 
     * 
     * @param rcl the listener object to remove 
     */ 
    public void removeReceivedPacketListener(ReceivedPacketListener rcl) 
    { 
        receivedPacketListeners.remove(rcl); 
    } 
 
    /** 
     * Invoked when a property bearer is registered. 
     * 
     * @param pbre the event object 
     */ 
    public void propertyBearerRegistered(PropertyBearerRegistrationEvent pbre) 
    { 
        ((Channel)pbre.getRegisteredPropertyBearer()).addReceivedPacketListener(this); 
    } 
 
    /** 
     * Invoked when a property bearer is deregistered. 
     * 
     * @param pbde the event object 
     */ 
    public void propertyBearerDeregistered(PropertyBearerDeregistrationEvent pbde) 
    { 
        ((Channel)pbde.getDeregisteredPropertyBearer()). 
                                     removeReceivedPacketListener(this); 
    } 
 
    /** 
     * receives a SecretKeypack and either immediately installs it as the 
     * current active key pack, or places it into the vector of future keypacks 
     * and set's the timer for its active period 
     * 
     * @param  keyPack  the SecretKeyPack to add to the the vector 
     */ 
    public synchronized void addKeyPack(SecretKeyPack keyPack){ 
      if (keyPack != null){ 
        long keyLifeDuration = keyPack.getEndTime() - timeProvider.getCurrentTime(); 
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        // if the packet has not expired, then schedule the key change, else reject it. 
        if(keyLifeDuration>0){ 
          long keyStartDelay = keyPack.getBeginTime() - timeProvider.getCurrentTime(); 
 
          // if there is a delay before the beginning of this key, add the 
          //  keyPack to the Vector and generate a TimerTask for the key to be 
          //  changed to this KeyPack.  If the Vector is empty, then first 
          //  generate a new Timer object in order to schedule the key change. 
          if (keyStartDelay > 0) { 
            if(nextKeyPacks.isEmpty()){ 
              keyChangeTimer = new Timer(); 
            } 
            addPackToVector(keyPack); 
            TimerTask keyChange = new TimerTask(){ 
              public void run(){changeKeys();} 
            }; 
            keyChangeTimer.schedule(keyChange,keyStartDelay); 
            this.println("a key pack has been received;  key change in "  
                          + keyStartDelay + " milliseconds"); 
          } 
 
          // if it's an immediate key change, then drop all awaiting packets, 
          //    cancel the tasks in the Timer, and load the new pack into the 
          //    nextPack Vector.  Then change the key. 
          else { 
            nextKeyPacks.clear(); 
            keyChangeTimer.cancel(); 
            nextKeyPacks.add(keyPack); 
            this.println("an immediate key pack has been received;  
                          immediate key change"); 
            this.println("****Vector has bee zeroed: " + nextKeyPacks.size()); 
 
            changeKeys(); 
          } 
        } 
        else {this.println("a Key pack has been rejected, time period has expired");} 
      } 
      else {this.println("Null keyPack received -> nothing done");} 
    } 
 
    /** 
     * adds a new KeyPack to the Vector of keyPacks awaiting activation.  The pack 
     *   is placed into the Vector in sequential order by time if activation 
     * 
     * @param newKeypack  the SecretKeyPack to add to the Vector 
     */ 
    private void addPackToVector(SecretKeyPack newKeyPack){ 
      SecretKeyPack skp1; 
      int i; 
 
      // go through the Vector and insert the ne KeyPack into its sequential 
      //    location based on beginTime 
      for(i = 0; i<nextKeyPacks.size(); i++){ 
        skp1 = (SecretKeyPack) nextKeyPacks.elementAt(i); 
        if (newKeyPack.getBeginTime() < skp1.getBeginTime()){ 
          nextKeyPacks.add(i,newKeyPack); 
          break; 
        } 
      } 
 
      // if the loop has completed and the index is equal to the Vector size, 
      //   then the keyPack wasn't added into the Vector, place it at the end 
      if (i == nextKeyPacks.size()){ 
        nextKeyPacks.add(newKeyPack); 
      } 
    } 
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    /** 
     * changes the keys.  First turns off the filter, then it removes the next 
     * KeyPack off the Vector and assigns it as the current KeyPack.  It then 
     * restarts the filter 
     */ 
    public void changeKeys(){ 
      endPacketTransmission(); 
      endPacketReception(); 
      if (currentKeyPack == null){currentKeyPack = 
                                  (SecretKeyPack)nextKeyPacks.elementAt(0);}; 
      synchronized (currentKeyPack){ 
        currentKeyPack = (SecretKeyPack)nextKeyPacks.remove(0); 
        this.println("key removed from vector " + nextKeyPacks.size()); 
        this.println("key change, new key ID:        "  
                      + new String(currentKeyPack.getKeyID())); 
        this.println("key Cipher parameters are:     "  
                      + currentKeyPack.getCipherParameters()); 
 
        try{ 
          encipherer = Cipher.getInstance(currentKeyPack.getCipherParameters()); 
          encipherer.init(Cipher.ENCRYPT_MODE,currentKeyPack.getKey(), 
                          new IvParameterSpec(currentKeyPack.getInitVector())); 
 
          decipherer = Cipher.getInstance(currentKeyPack.getCipherParameters()); 
          decipherer.init(Cipher.DECRYPT_MODE,currentKeyPack.getKey(), 
                          new IvParameterSpec(currentKeyPack.getInitVector())); 
        } 
        catch(Exception e){ 
          this.println("**Error in initializing the ciphers**"); 
        } 
      } 
      beginPacketTransmission(); 
      beginPacketReception(); 
    } 
 
    /** 
     * Provides a byte array containing the key id followed by the 
     * given data's ciphertext. 
     * 
     * @param clearData  the data to be enciphered 
     * @return byte[]    an array containing the keyID followed by the ciphertext 
     */ 
    private byte[] encipherData(byte[] clearData){ 
      byte[] cipherArray = null; 
 
      try{ 
 
        // synchronized around the currentakeyPack in order to ensure the keyPack does 
        //    not change between the .getKeyID call and the encipherer call 
        synchronized(currentKeyPack){ 
 
          // get the active key ID and encipher the data 
          byte[] keyID = currentKeyPack.getKeyID(); 
          Cipher c = encipherer; 
          byte[] encryptedData = c.doFinal(clearData); 
 
 
          // create the cipherArray containing the key ID in the first 4 bytes, 
          //    followed by the encrypted data 
          cipherArray = new byte[4 + encryptedData.length]; 
          int i; 
          for (i=0; i<4; i++){cipherArray[i] = keyID[i];} 
          for (; i<cipherArray.length; i++){cipherArray[i] = encryptedData[i-4];} 
        } 
      } 
      catch (Exception e){ 
        e.printStackTrace(); 
      } 
      // return the cipherArray 
      return cipherArray; 
    } 
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    /** 
     * Accepts an array of cipherData and returns the cleartext. 
     * 
     * @param cipherArray  an array containing an key ID followed by ciphertext 
     * @return byte[]      the deciphered data array 
     */ 
    private byte[] decipherData(byte[] cipherArray) throws Exception { 
 
      // initialize needed byte arrays 
      byte[] keyID = new byte[4]; 
      byte[] clearData = null; 
      byte[] cipherText = new byte[cipherArray.length - 4]; 
 
      // parses out the key ID and the ciphertext 
      int i; 
      for (i=0; i<4; i++){keyID[i] = cipherArray[i];} 
      for (; i<cipherArray.length; i++){cipherText[i-4] = cipherArray[i];} 
 
        // synchronized around the currentKeyPack in order to ensure the keyPack does 
        //    not change between the .getKeyID call and the encipherer call. 
        synchronized(currentKeyPack){ 
 
          // checks for a valid key ID 
          for (int j=0; j<4;j++){ 
            if (keyID[j] != currentKeyPack.getKeyID()[j]) { 
              throw new Exception(" SF: invalid Key ID in incomming packet"); 
            } 
          } 
 
          // decrypts the data 
          try{ 
              Cipher c = decipherer; 
              clearData = c.doFinal(cipherText); 
          } 
          catch (Exception e){ 
            e.printStackTrace(); 
          } 
        } 
 
        // return the clear data 
        return clearData; 
    } 
 
    /** 
     * Begins the transmission of packets 
     */ 
    public void beginPacketTransmission(){ 
      okToTransmit = true; 
      this.println("begin transmit"); 
    } 
 
    /** 
     * Stops the transmission of packets 
     */ 
    public void endPacketTransmission(){ 
      okToTransmit = false; 
      this.println("end transmit"); 
    } 
 
    /** 
     * Begins the reception of packets 
     */ 
    public void beginPacketReception(){ 
      okToReceive = true; 
      this.println("begin receive **"); 
    } 
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    /** 
     * Stops the reception of packets 
     */ 
    public void endPacketReception(){ 
      okToReceive = false; 
      this.println("end receive **"); 
    } 
 
    /** 
     * Sets the applications' ID 
     * 
     * @param id  the application's id long value 
     */ 
    public void setApplicationID(long id){ 
      applicationID = id; 
      this.println("Application ID set: " + applicationID); 
    } 
 
    /** 
     * sets the Filter's ID, and 
     * 
     * @param id  the filter's ID 
     */ 
    public void setID(String id){ 
      filterID = id; 
      this.println("filter ID set to: " + filterID); 
      this.println("registering with SM"); 
      securityManager = (SecurityManager) getServiceProvider(SecurityManager.class); 
      securityManager.addSecureSubscriber(this); 
    } 
 
    /** 
     * gets the filter's ID 
     * 
     * @return String the filter's ID 
     */ 
    public String getID(){ 
      return filterID; 
    } 
 
    /** 
     * returns the current active SecretKeyPack 
     * 
     * @return the current active SecretKeyPack 
     */ 
    public SecretKeyPack getCurrentKeyPack(){ 
      return currentKeyPack; 
    } 
 
    /** 
     * returns a Vector of SecretKeyPacks, the current one and any others in the queue 
     * 
     * @return Vector  the vector of keyPacks 
     */ 
 
    public Vector getAllKeyPacks() { 
      Vector temp = new Vector(); 
      temp.add(currentKeyPack); 
      for(int i=0; i<nextKeyPacks.size(); i++){ 
        temp.add(nextKeyPacks.elementAt(i)); 
      } 
      return nextKeyPacks; 
    } 
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    /** 
     * Synonymous with 'System.out.println', only it produces a class 
     * specific header before the passed String for ease of output 
     * identification 
     * 
     * @param aLine   the String to print out 
     */ 
    public void println(String aLine){ 
 
      // call the 'print' method, passing the provided String object 
      //   concatenated with a carriage return 
      this.print(aLine.concat("\n")); 
    } 
 
    /** 
     * Synonymous with 'System.out.print', only it produces a class 
     * specific header before the passed String for ease of output 
     * identification 
     * 
     * @param aLine   the String to print out 
     */ 
    private void print(String aLine){ 
      System.out.print("  Secure Filter (" + filterID + "): " + aLine); 
    } 
 
    /** 
     * Returns the filter's type as identified in the 
     *    SecureManagerSubscriber Interface 
     * 
     * @return int  the filter's type 
     */ 
    public int getFilterType(){ 
      return this.SECURE_FILTER_TYPE; 
    } 
} 
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